Entity

Time filter

Source Type


Gherzi R.,Gene Expression Regulation Laboratory | Chen C.-Y.,University of Alabama at Birmingham | Ramos A.,UK National Institute for Medical Research | Briata P.,Gene Expression Regulation Laboratory
Seminars in Cell and Developmental Biology | Year: 2014

The single-strand-RNA binding protein KSRP is able to negatively regulate gene expression operating with at least two distinct and integrated postranscriptional mechanisms: (i) by promoting decay of unstable mRNAs and (ii) by favoring maturation from precursors of select microRNAs (miRNAs) including the prototypical tumor suppressor let-7. Studies performed in primary and cultured cells as well as in mice proved that the ability of KSRP to integrate different levels of gene expression is required for proper immune response, lipid metabolism, cell-fate decisions, tissue regeneration, and DNA damage response. © 2014 Published by Elsevier Ltd. Source


Briata P.,Gene Expression Regulation Laboratory | Chen C.-Y.,University of Alabama at Birmingham | Ramos A.,UK National Institute for Medical Research | Gherzi R.,Gene Expression Regulation Laboratory
Biochimica et Biophysica Acta - Gene Regulatory Mechanisms | Year: 2013

KSRP is a single strand nucleic acid binding protein that controls gene expression at multiple levels. In this review we focus on the recent molecular, cellular, and structural insights into the mRNA decay promoting function of KSRP. We discuss also some aspects of KSRP-dependent microRNA maturation from precursors that are related to its mRNA destabilizing function. This article is part of a Special Issue entitled: RNA Decay mechanisms. © 2012 Elsevier B.V. Source


Giovarelli M.,Gene Expression Regulation Laboratory | Bucci G.,Center for Translational Genomic and Bioinformatics | Ramos A.,University College London | Ramos A.,UK National Institute for Medical Research | And 6 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

Long noncoding RNAs (lncRNAs) interact with protein factors to regulate different layers of gene expression transcriptionally or posttranscriptionally. Here we report on the functional consequences of the unanticipated interaction of the RNA binding protein K homology-type splicing regulatory protein (KSRP) with the H19 lncRNA (H19). KSRP directly binds to H19 in the cytoplasm of undifferentiated multipotent mesenchymal C2C12 cells, and this interaction favors KSRP-mediated destabilization of labile transcripts such as myogenin. AKT activation induces KSRP dismissal from H19 and, as a consequence, myogenin mRNA is stabilized while KSRP is repurposed to promote maturation of myogenic microRNAs, thus favoring myogenic differentiation. Our data indicate that H19 operates as a molecular scaffold that facilitates effective association of KSRP with myogenin and other labile transcripts, and we propose that H19 works with KSRP to optimize an AKT-regulated posttranscriptional switch that controls myogenic differentiation. Source


Giovarelli M.,University of Genoa | Giovarelli M.,Centro Of Biotecnologie Avanzate Cba | Bucci G.,Italian Institute of Technology | Pasero M.,University of Genoa | And 3 more authors.
Biochimica et Biophysica Acta - Gene Regulatory Mechanisms | Year: 2013

Understanding the molecular mechanisms that control the balance between multipotency and differentiation is of great importance to elucidate the genesis of both developmental disorders and cell transformation events. To investigate the role of the RNA binding protein KSRP in controlling neural differentiation, we used the P19 embryonal carcinoma cell line that is able to differentiate into neuron-like cells under appropriate culture conditions. We have recently reported that KSRP controls the differentiative fate of multipotent mesenchymal cells owing to its ability to promote decay of unstable transcripts and to favor maturation of selected micro-RNAs (miRNAs) from precursors. Here we report that KSRP silencing in P19 cells favors neural differentiation increasing the expression of neuronal markers. Further, the expression of two master transcriptional regulators of neurogenesis, ASCL1 and JMJD3, was enhanced while the maturation of miR-200 family members from precursors was impaired in KSRP knockdown cells. These molecular changes can contribute to the reshaping of P19 cells transcriptome that follows KSRP silencing. Our data suggests that KSRP function is required to maintain P19 cells in a multipotent undifferentiated state and that its inactivation can orient cells towards neural differentiation. © 2013 Elsevier B.V. Source


Hollingworth D.,Molecular Structure Division | Candel A.M.,Molecular Structure Division | Nicastro G.,Molecular Structure Division | Martin S.R.,UK National Institute for Medical Research | And 3 more authors.
Nucleic Acids Research | Year: 2012

In eukaryotes, RNA-binding proteins that contain multiple K homology (KH) domains play a key role in coordinating the different steps of RNA synthesis, metabolism and localization. Understanding how the different KH modules participate in the recognition of the RNA targets is necessary to dissect the way these proteins operate. We have designed a KH mutant with impaired RNA-binding capability for general use in exploring the role of individual KH domains in the combinatorial functional recognition of RNA targets. A double mutation in the hallmark GxxG loop (GxxG-to-GDDG) impairs nucleic acid binding without compromising the stability of the domain. We analysed the impact of the GDDG mutations in individual KH domains on the functional properties of KSRP as a prototype of multiple KH domain-containing proteins. We show how the GDDG mutant can be used to directly link biophysical information on the sequence specificity of the different KH domains of KSRP and their role in mRNA recognition and decay. This work defines a general molecular biology tool for the investigation of the function of individual KH domains in nucleic acid binding proteins. © The Author(s) 2012. Source

Discover hidden collaborations