Time filter

Source Type

Chicago Ridge, IL, United States

Burt R.K.,Northwestern University | Chen Y.-H.,Genani Corporation | Verda L.,Northwestern University | Lucena C.,Centro Colombiano Of Fertilidad Y Esterilildad | And 10 more authors.
Circulation Research | Year: 2012

RATIONALE: Various types of viable stem cells have been reported to result in modest improvement in cardiac function after acute myocardial infarction. The mechanisms for improvement from different stem cell populations remain unknown. OBJECTIVE: To determine whether irradiated (nonviable) embryonic stem cells (iESCs) improve postischemic cardiac function without adverse consequences. METHODS AND RESULTS: After coronary artery ligation-induced cardiac infarction, either conditioned media or male murine or male human iESCs were injected into the penumbra of ischemic myocardial tissue of female mice or female rhesus macaque monkeys, respectively. Murine and human iESCs, despite irradiation doses that prevented proliferation and induced cell death, significantly improved cardiac function and decreased infarct size compared with untreated or media-treated controls. Fluorescent in situ hybridization of the Y chromosome revealed disappearance of iESCs within the myocardium, whereas 5-bromo-2′-deoxyuridine assays revealed de novo in vivo cardiomyocyte DNA synthesis. Microarray gene expression profiling demonstrated an early increase in metabolism, DNA proliferation, and chromatin remodeling pathways, and a decrease in fibrosis and inflammatory gene expression compared with media-treated controls. CONCLUSIONS: As a result of irradiation before injection, ex vivo and in vivo iESC existence is transient, yet iESCs provide a significant improvement in cardiac function after acute myocardial infarction. The mechanism(s) of action of iESCs seems to be related to cell-cell exchange, paracrine factors, and a scaffolding effect between iESCs and neighboring host cardiomyocytes. © 2012 American Heart Association, Inc. Source

Discover hidden collaborations