Blacksburg, VA, United States

Gate Fuels Incorporated

www.gatefuels.com
Blacksburg, VA, United States

Time filter

Source Type

Grant
Agency: National Science Foundation | Branch: | Program: STTR | Phase: Phase I | Award Amount: 225.00K | Year: 2014

This Small Business Technology Transfer (STTR) Phase I project proposes to develop a new low-cost platform for the production of methyl ethyl ketone directly from pretreated cellulosic biomass in a single step using a novel recombinant cellulolytic Bacillus subtilis strain. Methyl ethyl ketone (MEK), also referred to as 2-butanone, is the second most important commercial ketone after acetone. MEK is currently only produced by the oxidation of 2-butanol. However, this industrial synthesis process uses starting materials derived from petrochemicals and is generally expensive as well as not environmentally friendly. There is an urgent need to develop a novel cost-effective and environmentally friendly method to produce MEK other than through 2-butanol. The cellulosic biomass is the most abundant natural renewable resource and has great potential for the production of valuable biocommodities for both short- and long-term sustainability. However, the process for converting non-food lignocellulosic material into MEK is not yet economically feasible due to the high cost of the cellulase involved in cellulose hydrolysis and the use of fastidious culture media. Using synthetic pathway and metabolic engineering, this project will convert noncellulose-utilizing B. subtilis into an efficient cellulose utilizer to produce MEK with high yield and titer, suitable for industrial fermentation. The broader impact/commercial potential of this project, if successful, will be a low-cost platform for producing MEK from nonfood biomass in a process called consolidated bioprocessing. MEK may then be used as a solvent for paint, and serve as an intermediate in the production of other chemicals. Therefore, MEK could easily find a market in the paint industry and in plastics manufacturing. More importantly, MEK could be converted by subsequent hydrogenation into octane isomers that can be used to produce high-grade aviation fuel. Currently, MEK is synthesized from petroleum-derived chemicals via a method involving greenhouse gas emissions. So far, few efforts have been made to produce bio-based MEK due to low process economics. The proposed recombinant cellulolytic B. subtilis would have advantages over developing other microorganisms. In addition, the novel green technology will satisfy operational cost considerations, environmental concerns, and health and safety regulations. Compared to traditional mechanism, this novel route will be more cost-effective and environmentally friendly. If successfully commercialized after the completion of the Phase II project, this bio-based MEK production technology will have a significant competitive advantage over traditional methods because it is more commercially attractive and supports sustainable societal development.


You C.,Virginia Polytechnic Institute and State University | Chen H.,Virginia Polytechnic Institute and State University | Chen H.,Henan Agricultural University | Myung S.,Virginia Polytechnic Institute and State University | And 9 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2013

The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. Tomeet the world's future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially whileminimizing agriculture's environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma.


Huang W.-D.,Virginia Polytechnic Institute and State University | Huang W.-D.,Hefei University of Technology | Zhang Y.-H.P.,Virginia Polytechnic Institute and State University | Zhang Y.-H.P.,U.S. Department of Energy | Zhang Y.-H.P.,Gate Fuels Incorporated
PLoS ONE | Year: 2011

Background: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements - biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case - corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. © 2011 Huang, Zhang.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase II | Award Amount: 437.16K | Year: 2013

This Small Business Innovation Research Phase II project will further develop new proprietary cellulolytic Bacillus subtilis strains that can produce high-titer, optically- pure L-lactate in high yields from pretreated lignocellulosic biomass through consolidated bioprocessing (CBP) technology. Lactate, or equivalently, lactic acid, is the precursor of the biodegradable plastic polylactic acid (PLA). The following Phase I goals were achieved: (i) the creation of a cellulolytic B. subtilis strain with an enhanced cellulolytic ability, (ii) the demonstration of lactate production from pretreated biomass without the use of cellulases, and (iii) the secretion of large-size heterologous proteins in B. subtilis. This Phase II project will further engineer strains with enhanced cellulolytic ability, and will seek to increase product yield, productivity (i.e., its space time yield), titer, and purity using systems biology and synthetic biology tools. At completion of this project, the goal is to have industrially-ready CBP strains that can hydrolyze pretreated lignocellulosic biomass efficiently, with product yields of>90% based on mixed biomass sugars and>95% based on glucose, a titer of ~150 g/L, and a productivity of ~1 g/L/h. Such Bacillus strains will be ready for large-scale fermentation as a continuing commercialization phase. The broader impact/commercial potential of this project is the production of a key building-block chemical from biomass. New proprietary recombinant cellulolytic B. subtilis strainsdeveloped in this project will provide an ultra-low-cost platform for producing L-lactate from the non-food biomass, with many advantages over other developing CBP microorganisms. Large-scale production of L-lactate from pretreated lignocellulosic biomass will enable the development of other CBP microorganisms that could produce PLA, biochemicals (e.g., succinate) and advanced drop-in biofuels (e.g., isobutanol, jet fuel) in the future.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 150.00K | Year: 2012

This Small Business Innovation Research Phase I project will develop high-power and high-energy-density enzymatic fuel cells (EFCs) that can completely oxidize low-cost maltodextrin (i.e., a partially hydrolyzed starch fragment). EFCs have received increasing interest as a next-generation, environmentally friendly (micro-)power source. Compared to microbial fuel cells, EFCs have much higher power densities suitable for more applications. However, current EFCs are limited by the partial oxidization of hexose molecules by one or two redox enzymes (i.e., 2-4 mol of electrons produced per mol of glucose) and a short enzyme lifetime. The goal of this project is to demonstrate the technical feasibility of the complete oxidation of maltodextrin in EFCs through a patent-pending synthetic enzymatic pathway. The technological innovation of this project is the construction of an ATP-free and CoA-free pathway by an assembly of thermostable enzymes to generate 24 electrons per glucose unit and increase power density. As a result, EFCs are expected to feature high energy density due to the complete oxidization of the fuel, high-power density due to substrate channeling among cascade enzymes and the mitigation of product inhibition of the enzymes, and a long lifetime due to the use of thermostable enzymes.

The broader impact/commercial potential of this project is developing bio-inspired sugar biobatteries featuring four appealing advantages: (i) biodegradability, (ii) safety, (iii) high energy storage density (e.g., 400 Wh electricity/kg for a 20% (w/v) maltodextrin solution, nearly three times that of lithium ion batteries), and (iv) fast refilling by adding a sugar solution. EFCs would have broad potential applications, such as rechargeable battery chargers (e.g., cellular phone chargers for outdoor uses or portable military devices), educational toy kits, and disposable (primary) batteries. In the future, miniaturized sugar-powered EFCs could potentially replace some secondary (rechargeable) batteries. Sugar-powered EFCs would be nearly 100% biodegradable, with the exception of the electrodes and wires, and are based on non-toxic and earth-abundant elements. The maltodextrin solution is neither toxic nor flammable. The innovation of EFCs equipped with this in vitro synthetic pathway would greatly promote the concept of in vitro synthetic biology and demonstrate another advantage a faster reaction rate than that of microbes due primarily to the absence of a cellular membrane. In addition, the generation of electricity from renewable and low-cost sugars, namely maltodextrin or future cellulosic materials, would decrease greenhouse gas emissions, increase national energy security, and promote rural economies.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 225.00K | Year: 2014

This Small Business Technology Transfer (STTR) Phase I project proposes to develop a new low-cost platform for the production of methyl ethyl ketone directly from pretreated cellulosic biomass in a single step using a novel recombinant cellulolytic Bacillus subtilis strain. Methyl ethyl ketone (MEK), also referred to as 2-butanone, is the second most important commercial ketone after acetone. MEK is currently only produced by the oxidation of 2-butanol. However, this industrial synthesis process uses starting materials derived from petrochemicals and is generally expensive as well as not environmentally friendly. There is an urgent need to develop a novel cost-effective and environmentally friendly method to produce MEK other than through 2-butanol. The cellulosic biomass is the most abundant natural renewable resource and has great potential for the production of valuable biocommodities for both short- and long-term sustainability. However, the process for converting non-food lignocellulosic material into MEK is not yet economically feasible due to the high cost of the cellulase involved in cellulose hydrolysis and the use of fastidious culture media. Using synthetic pathway and metabolic engineering, this project will convert noncellulose-utilizing B. subtilis into an efficient cellulose utilizer to produce MEK with high yield and titer, suitable for industrial fermentation.

The broader impact/commercial potential of this project, if successful, will be a low-cost platform for producing MEK from nonfood biomass in a process called consolidated bioprocessing. MEK may then be used as a solvent for paint, and serve as an intermediate in the production of other chemicals. Therefore, MEK could easily find a market in the paint industry and in plastics manufacturing. More importantly, MEK could be converted by subsequent hydrogenation into octane isomers that can be used to produce high-grade aviation fuel. Currently, MEK is synthesized from petroleum-derived chemicals via a method involving greenhouse gas emissions. So far, few efforts have been made to produce bio-based MEK due to low process economics. The proposed recombinant cellulolytic B. subtilis would have advantages over developing other microorganisms. In addition, the novel green technology will satisfy operational cost considerations, environmental concerns, and health and safety regulations. Compared to traditional mechanism, this novel route will be more cost-effective and environmentally friendly. If successfully commercialized after the completion of the Phase II project, this bio-based MEK production technology will have a significant competitive advantage over traditional methods because it is more commercially attractive and supports sustainable societal development.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 437.16K | Year: 2013

This Small Business Innovation Research Phase II project will further develop new proprietary cellulolytic Bacillus subtilis strains that can produce high-titer, optically- pure L-lactate in high yields from pretreated lignocellulosic biomass through consolidated bioprocessing (CBP) technology. Lactate, or equivalently, lactic acid, is the precursor of the biodegradable plastic polylactic acid (PLA). The following Phase I goals were achieved: (i) the creation of a cellulolytic B. subtilis strain with an enhanced cellulolytic ability, (ii) the demonstration of lactate production from pretreated biomass without the use of cellulases, and (iii) the secretion of large-size heterologous proteins in B. subtilis. This Phase II project will further engineer strains with enhanced cellulolytic ability, and will seek to increase product yield, productivity (i.e., its space time yield), titer, and purity using systems biology and synthetic biology tools. At completion of this project, the goal is to have industrially-ready CBP strains that can hydrolyze pretreated lignocellulosic biomass efficiently, with product yields of >90% based on mixed biomass sugars and >95% based on glucose, a titer of ~150 g/L, and a productivity of ~1 g/L/h. Such Bacillus strains will be ready for large-scale fermentation as a continuing commercialization phase.

The broader impact/commercial potential of this project is the production of a key building-block chemical from biomass. New proprietary recombinant cellulolytic B. subtilis strainsdeveloped in this project will provide an ultra-low-cost platform for producing L-lactate from the non-food biomass, with many advantages over other developing CBP microorganisms. Large-scale production of L-lactate from pretreated lignocellulosic biomass will enable the development of other CBP microorganisms that could produce PLA, biochemicals (e.g., succinate) and advanced drop-in biofuels (e.g., isobutanol, jet fuel) in the future.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: | Award Amount: 178.78K | Year: 2011

This Small Business Innovation Research Phase I project will develop a new ultra-low-cost platform for the production of lactic acid directly from pretreated lignocellulosic biomass in a single step by using a novel recombinant cellulolytic Bacillus subtilis strain. Lactic acid is the precursor of polylactic acid (PLA), an environmentally friendly biodegradable plastic. Currently, lactic acid is commercially produced through bacterial fermentation based on corn starch or cane sugar, which are food and animal feed. Cellulosic biomass is the most abundant natural renewable resource, which has great potential in the production of valuable biocommodities for both short- and long-term sustainability. However, the process for converting non-food lignocellulosic material into lactic acid is not feasible yet due to the high cost of cellulase involved in cellulose hydrolysis and also to the use of fastidious culture media. Through the systematic genetic engineering and metabolic engineering, this project will convert noncellulose- utilizing B. subtilis to an efficient lignocellulose utilizer and to produce lactic acid at high yield and titer, suitable for industrial fermentation.

The broader impact/commercial potential of this project is that the proposed recombinant cellulolytic B. subtilis would be an ultra-low-cost platform for producing lactic acid from non-food biomass, with obvious advantages over other developing CBP microorganisms. Also, this effort would serve as a model system to convert other industrially important microorganisms into cellulose utilizers and result in use of renewable and less expensive substrates for the production of valuable products. Lactic acid was identified by the U.S. DOE as one of the top 30 value-added and potential buildingblock chemicals made from biomass. There are many potential derivatives of lactic acid, some of which are new chemical products and others represent biobased alternatives to chemicals currently produced from petroleum. The use of lactic acid for making biodegradable PLA is growing rapidly, given the rising demand for environmentally friendly packaging. The production of PLA releases fewer toxic substances than making petroleum plastic, consumes less energy, and releases an estimated two-thirds less greenhouse gas. PLA can be composted, incinerated or recycled. There is no doubt that the consumption of the biodegradable plastic products derived from lactic acid would decrease the growing environmental pollution and attract greater consumer interest towards the use of green products.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 150.00K | Year: 2012

This Small Business Innovation Research Phase I project will develop high-power and high-energy-density enzymatic fuel cells (EFCs) that can completely oxidize low-cost maltodextrin (i.e., a partially hydrolyzed starch fragment). EFCs have received increasing interest as a next-generation, environmentally friendly (micro-)power source. Compared to microbial fuel cells, EFCs have much higher power densities suitable for more applications. However, current EFCs are limited by the partial oxidization of hexose molecules by one or two redox enzymes (i.e., 2-4 mol of electrons produced per mol of glucose) and a short enzyme lifetime. The goal of this project is to demonstrate the technical feasibility of the complete oxidation of maltodextrin in EFCs through a patent-pending synthetic enzymatic pathway. The technological innovation of this project is the construction of an ATP-free and CoA-free pathway by an assembly of thermostable enzymes to generate 24 electrons per glucose unit and increase power density. As a result, EFCs are expected to feature high energy density due to the complete oxidization of the fuel, high-power density due to substrate channeling among cascade enzymes and the mitigation of product inhibition of the enzymes, and a long lifetime due to the use of thermostable enzymes. The broader impact/commercial potential of this project is developing bio-inspired sugar biobatteries featuring four appealing advantages: (i) biodegradability, (ii) safety, (iii) high energy storage density (e.g., 400 Wh electricity/kg for a 20% (w/v) maltodextrin solution, nearly three times that of lithium ion batteries), and (iv) fast refilling by adding a sugar solution. EFCs would have broad potential applications, such as rechargeable battery chargers (e.g., cellular phone chargers for outdoor uses or portable military devices), educational toy kits, and disposable (primary) batteries. In the future, miniaturized sugar-powered EFCs could potentially replace some secondary (rechargeable) batteries. Sugar-powered EFCs would be nearly 100% biodegradable, with the exception of the electrodes and wires, and are based on non-toxic and earth-abundant elements. The maltodextrin solution is neither toxic nor flammable. The innovation of EFCs equipped with this in vitro synthetic pathway would greatly promote the concept of in vitro synthetic biology and demonstrate another advantage a faster reaction rate than that of microbes due primarily to the absence of a cellular membrane. In addition, the generation of electricity from renewable and low-cost sugars, namely maltodextrin or future cellulosic materials, would decrease greenhouse gas emissions, increase national energy security, and promote rural economies.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 149.98K | Year: 2011

This Small Business Innovation Research Phase I project will develop a new ultra-low-cost platform for the production of lactic acid directly from pretreated lignocellulosic biomass in a single step by using a novel recombinant cellulolytic Bacillus subtilis strain. Lactic acid is the precursor of polylactic acid (PLA), an environmentally friendly biodegradable plastic. Currently, lactic acid is commercially produced through bacterial fermentation based on corn starch or cane sugar, which are food and animal feed. Cellulosic biomass is the most abundant natural renewable resource, which has great potential in the production of valuable biocommodities for both short- and long-term sustainability. However, the process for converting non-food lignocellulosic material into lactic acid is not feasible yet due to the high cost of cellulase involved in cellulose hydrolysis and also to the use of fastidious culture media. Through the systematic genetic engineering and metabolic engineering, this project will convert noncellulose- utilizing B. subtilis to an efficient lignocellulose utilizer and to produce lactic acid at high yield and titer, suitable for industrial fermentation. The broader impact/commercial potential of this project is that the proposed recombinant cellulolytic B. subtilis would be an ultra-low-cost platform for producing lactic acid from non-food biomass, with obvious advantages over other developing CBP microorganisms. Also, this effort would serve as a model system to convert other industrially important microorganisms into cellulose utilizers and result in use of renewable and less expensive substrates for the production of valuable products. Lactic acid was identified by the U.S. DOE as one of the top 30 value-added and potential buildingblock chemicals made from biomass. There are many potential derivatives of lactic acid, some of which are new chemical products and others represent biobased alternatives to chemicals currently produced from petroleum. The use of lactic acid for making biodegradable PLA is growing rapidly, given the rising demand for environmentally friendly packaging. The production of PLA releases fewer toxic substances than making petroleum plastic, consumes less energy, and releases an estimated two-thirds less greenhouse gas. PLA can be composted, incinerated or recycled. There is no doubt that the consumption of the biodegradable plastic products derived from lactic acid would decrease the growing environmental pollution and attract greater consumer interest towards the use of green products.

Loading Gate Fuels Incorporated collaborators
Loading Gate Fuels Incorporated collaborators