Pleasanton, CA, United States
Pleasanton, CA, United States

Time filter

Source Type

Patent
Gatan Inc. | Date: 2017-05-03

An electron energy loss spectrometer for electron microscopy is disclosed having an electrically isolated drift tube (214) extending through the bending magnet (213) and through subsequent optics (216, 217) that focus and magnify the spectrum. An electrostatic or magnetic lens (211, 212, 219, 220) is located either before or after or both before and after the drift tube and the lens or lenses are adjusted as a function of the bending magnet drift tube voltage to maintain a constant net focal length and to avoid defocusing. An energy selecting slit (218) is included in certain embodiments to cleanly cut off electrons dispersed outside the energy range incident on the detector, thereby eliminating artifacts caused by unwanted electrons scattering back into the spectrum.


Patent
Gatan Inc. | Date: 2017-02-22

There is disclosed a hybrid arrangement of more than one electron energy conversion mechanism in a detector arranged physically such that the electron image can be acquired from both energy converters 1002,1001 in such a manner that selected high-illumination parts of the image can be imaged with an indirectly coupled 1003 scintillator detector 1002 and the remainder of the image acquired with the high-sensitivity/direct electron portion of the detector 1001 without readjustments in the beam position or mechanical positioning of the detector parts. Further, a mechanism to allow dynamically switchable or simultaneous linear and counted signal processing from each pixel of the image so that high-illumination areas can be acquired linearly without the severe dose rate limitation of counting and low- illumination regions can be acquired with counting, the switchover point determined by the dose rate at which signal quality breaks even between linear and counting modes.


Disclosed are embodiments of an ion beam sample preparation and coating apparatus and methods. A sample may be prepared in one or more ion beams and then a coating may be sputtered onto the prepared sample within the same apparatus. A vacuum transfer device may be used with the apparatus in order to transfer a sample into and out of the apparatus while in a controlled environment. Various methods to improve preparation and coating uniformity are disclosed including: rotating the sample retention stage; modulating the sample retention stage; variable tilt ion beam irradiating means, more than one ion beam irradiating means, coating thickness monitoring, selective shielding of the sample, and modulating the coating donor holder.


Methods are disclosed for removal of outlier pixels from a transmission electron microscopy camera image. One exemplary method includes establishing a desired exposure of n electrons per pixel; exposing the camera to a series of sub-frame exposures to produce a series of sub-frame images; calculating an average image signal of all sub-frame exposures in said series; establishing a threshold selected to achieve a desired number of false positives; evaluating each of said sub-frame exposures for pixels further away from said average than said threshold; and replacing pixels in each of said sub-frame images that exceed said threshold with said average to form corrected sub-frame images.


Disclosed are embodiments of an ion beam sample preparation and coating apparatus and methods. A sample may be prepared in one or more ion beams and then a coating may be sputtered onto the prepared sample within the same apparatus. A vacuum transfer device may be used with the apparatus in order to transfer a sample into and out of the apparatus while in a controlled environment. Various methods to improve preparation and coating uniformity are disclosed including: rotating the sample retention stage; modulating the sample retention stage; variable tilt ion beam irradiating means, more than one ion beam irradiating means, coating thickness monitoring, selective shielding of the sample, and modulating the coating donor holder.


Disclosed are embodiments of an ion beam shield for use in an ion beam sample preparation apparatus and methods for using the embodiments. The apparatus has an ion beam irradiating means in a vacuum chamber that may direct ions toward a sample, a shield blocking a portion of the ions directed toward the sample, and a shield retention stage with shield retention means that replaceably and removably holds the shield in a position. The ion beam shield has datum features which abut complementary datum features on the shield retention stage when the shield is held in the shield retention stage. The shield has features which enable the durable adhering of the sample to the shield for processing the sample with the ion beam. The complementary datum features on both shield and shield retention stage enable accurate and repeatable positioning of the sample in the apparatus for sample processing and reprocessing.


Patent
Gatan Inc. | Date: 2015-04-16

There is disclosed a hybrid arrangement of more than one electron energy conversion mechanism in a detector arranged physically such that the electron image can be acquired from both energy converters in such a manner that selected high-illumination parts of the image can be imaged with an indirectly coupled scintillator detector and the remainder of the image acquired with the high-sensitivity/direct electron portion of the detector without readjustments in the beam position or mechanical positioning of the detector parts. Further, a mechanism to allow dynamically switchable or simultaneous linear and counted signal processing from each pixel of the image so that high-illumination areas can be acquired linearly without the severe dose rate limitation of counting and low-illumination regions can be acquired with counting, the switchover point determined by the dose rate at which signal quality breaks even between linear and counting modes.


Patent
Gatan Inc. | Date: 2013-07-24

Disclosed are embodiments of an ion beam sample preparation apparatus and methods. The apparatus has disposed in a vacuum chamber at least one tilting ion beam irradiating means with intensity control, a rotation stage with rotation control, a sample holder, and an adjustable positioning stage that has two axes of positional adjustment that are operable to move the region of the sample being prepared by the ion beam relative to the ion beam. The apparatus may also include a vacuum-tight optical window for observing the sample and a shutter for protecting the optical window from debris while the sample is prepared in the ion beam.


Patent
Gatan Inc. | Date: 2014-07-27

Ion beam sample preparation apparatus and methods are described. The apparatus has disposed in a vacuum chamber at least one tilting ion beam irradiating means with intensity control, a rotation stage with rotation control, a sample holder, and an adjustable positioning stage that has two axes of positional adjustment that are operable to move the region of the sample being prepared by the ion beam relative to the ion beam. The apparatus may also include a vacuum-tight optical window for observing the sample and a shutter for protecting the optical window from debris while the sample is prepared in the ion beam. The apparatus may also include an instrument controller responsive to the state of the apparatus and to the condition of the sample and is operable to control the preparation of the sample.


Disclosed are embodiments of an ion beam shield for use in an ion beam sample preparation apparatus and methods for using the embodiments. The apparatus comprises an ion beam irradiating means in a vacuum chamber that may direct ions toward a sample, a shield blocking a portion of the ions directed toward the sample, and a shield retention stage with shield retention means that replaceably and removably holds the shield in a position. The ion beam shield has datum features which abut complementary datum features on the shield retention stage when the shield is held in the shield retention stage. The shield has features which enable the durable adhering of the sample to the shield for processing the sample with the ion beam. The complementary datum features on both shield and shield retention stage enable accurate and repeatable positioning of the sample in the apparatus for sample processing and reprocessing.

Loading Gatan Inc. collaborators
Loading Gatan Inc. collaborators