Des Plaines, IL, United States
Des Plaines, IL, United States

The Gas Technology Institute is an American non-profit research and development organization which develops, demonstrates, and licenses new energy technologies for private and public clients, with a particular focus on the natural gas industry. GTI is located in Des Plaines, Illinois. Wikipedia.


Time filter

Source Type

Patent
Gas Technology Institute | Date: 2016-08-17

A biomass-derived thermosetting polymer material being a product of processing a biomass feed material via a twin screw extruder having a length extending between an inlet and an outlet. Hot water from a water heater is injected into at least one inlet along the length of the twin screw extruder, the at least one inlet generally corresponding with a pressure boundary within the twin screw extruder. A pressure-sustaining valve is connected between the length of the twin screw extruder and the outlet, with the valve being adjusted to produce the biomass-derived thermosetting polymer material.


Patent
Gas Technology Institute | Date: 2015-04-27

Hydropyrolysis processes are described, in which differing types of feedstocks, including at least one biorenewable feedstock, namely a biomass-containing feedstock, may be co-processed to allow enhancements in operating conditions and/or product properties, depending on changing customer requirements and/or overall market demands. According to specific embodiments, an aliphatic hydrocarbon precursor or an aromatic hydrocarbon precursor is co-processed with the biomass-containing feedstock to enhance an operating condition (e.g., a reactor temperature profile) of the hydropyrolysis process and/or a property (e.g., cetane number) of a liquid product (e.g., a diesel boiling range fraction) obtained from a substantially fully deoxygenated hydrocarbon liquid.


Patent
Gas Technology Institute | Date: 2014-05-14

A method for producing organic liquid fuels and other valuable products in which an organic compound is provided to an anode electrode having a metal oxide catalyst disposed on an anode side of an electrolyte membrane, thereby producing an organic liquid fuel and/or other valuable organic product and electrons on the anode side. The electrons are conducted to a cathode electrode disposed on a cathode side of the electrolyte membrane, thereby transforming water provided to the cathode side to H_(2) gas and hydroxide ions. The method is carried out at a temperature less than or equal to about 160C, preferably at room temperature.


Patent
Gas Technology Institute | Date: 2015-11-18

A method for producing methanol from methane in which methane is provided to an anode electrode having a metal oxide catalyst disposed on an anode side of an electrolyte membrane, thereby producing methanol and electrons on the anode side. The electrons are conducted to a cathode electrode such as having an oxygen reduction catalyst disposed on a cathode side of the electrolyte membrane, thereby transforming oxygen and water provided to the cathode side to hydroxide ions.


Patent
Gas Technology Institute | Date: 2014-11-21

A process for removing carbon dioxide from a carbon dioxide-loaded solvent uses two stages of flash apparatus. Carbon dioxide is flashed from the solvent at a higher temperature and pressure in the first stage, and a lower temperature and pressure in the second stage, and is fed to a multi-stage compression train for high pressure liquefaction. Because some of the carbon dioxide fed to the compression train is already under pressure, less energy is required to further compress the carbon dioxide to a liquid state, compared to conventional processes.


This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.


A system for the production of carbonized biomass that includes an infeed for accepting biomass feed material and an associated twin screw extruder. A water heater is connected with respect to at least one inlet along a length of the twin screw extruder and a pressure sustaining valve is connected at an outlet of the twin screw extruder.


Patent
Gas Technology Institute | Date: 2016-05-26

Processes and systems for producing hydrogen gas utilizing a sorbent enhanced reformer in combination with a calciner operating at atmospheric pressure. Feed material is introduced into the sorbent enhanced reformer to produce carbon dioxide and hydrogen gas. Sorbent material within the reformer acts to absorb carbon dioxide and form a used sorbent. The used sorbent is introduced into the atmospheric calciner to heat the used sorbent to desorb carbon dioxide from the used sorbent to produce regenerated sorbent which can be recycled to the reformer.


Patent
Gas Technology Institute | Date: 2016-03-30

A reactor system includes a fluidized-bed. A fuel and a sulfur absorbent material are eluted through the fluidized-bed. The reactor system may include a heat exchanger having a heat-exchanging portion within a heating zone of the reactor that is hermetically sealed from the heating zone. The reactor may include loose particles of an inert bed material for forming the fluidized-bed. A feed system may be provided to inject a solid fuel composite that includes a mixture of a solid, carbonaceous fuel and a solid reagent into the reactor.


Patent
Gas Technology Institute | Date: 2015-12-21

A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.

Loading Gas Technology Institute collaborators
Loading Gas Technology Institute collaborators