Garhbeta College

Paschim, India

Garhbeta College

Paschim, India
SEARCH FILTERS
Time filter
Source Type

Ghosh S.K.,Garhbeta College
Journal of Magnetism and Magnetic Materials | Year: 2017

This paper is to study the flow of heated ferro-fluid over a stretching sheet under the influence of magnetic field. The fluid considered in the present investigation is a mixture of blood as well as fluid-dispersed magnetic nano particles and under this context blood is found to be the appropriate choice of viscoelastic, Walter's B fluid. The objective of the present work is to study the effect of various parameters found in the mathematical analysis. Taking into account the blood has zero electrical conductivity, magnetization effect has been considered in the governing equation of the present study with the use of ferro-fluid dynamics principle. By introducing appropriate non-dimensional variables into the governing equations of unsteady two-dimensional flow of viscoelastic fluid with heat transfer are converted to a set of ordinary differential equations with appropriate boundary conditions. Newton's linearization technique has been employed for the solution of non-linear ordinary differential equations. Important results found in the present investigation are the substantial influence of ferro-magnetic parameter, Prandlt number and the parameter associated with the thermal conductivity on the flow and heat transfer. It is observed that the presence of magnetic dipole essentially reduces the flow velocity in the vertical direction and that helps to damage the cancer cells in the tumor region. © 2017


Ghosh S.K.,Garhbeta College | Shit G.C.,Garhbeta College | Shit G.C.,Jadavpur University | Misra J.C.,Siksha ‘O’ Anusandhan University
Journal of Applied Fluid Mechanics | Year: 2014

Flow of a viscoelastic fluid through a channel with stretching walls in the presence of a magnetic field has been investigated. The viscosity of the fluid is assumed to vary with temperature. Convective heat transfer is considered along with viscous dissipation and Ohmic dissipation. The equations that govern the motion of the fluid and heat transfer are coupled and non-linear. The governing partial differential equations are reduced to a set of ordinary differential equations by using similarity transformation. The transformed equations subject to the boundary conditions are solved by developing a suitable finite difference scheme. Numerical estimates of the flow and heat transfer variables are obtained by considering blood as the working fluid. The computational values are found to be in good agreement with those of previous studies.


Jana S.K.,Vidyasagar University | Lise W.,AF Mercados EMI | Lise W.,ECORYS Research and Consulting | Ahmed M.,Garhbeta College
Journal of Forest Economics | Year: 2014

This study analyses participation in joint forest management (JFM). The study is based on in-depth interviews with 150 households of Forest Protection Committees (FPC) in Paschim Medinipur district in the West Bengal state of India. Based on a Principal Component Analysis (PCA) of 14 participatory indicators, it follows that "social" aspects of participation are considerably less important in West Bengal than as found elsewhere in India, while the perception of the environment (first and third factor) stand out as the most important aspects of participation in JFM, jointly explaining almost half of the variance. Regression analyses indicate that household size, the number of forest committee meetings, religion of the household, willingness to pay of the household for the forest protection and the size of land holding are important variables for explaining variation in levels of participation. Results from estimating game theoretic models on participation among villagers in JFM indicates that in two out of the four possible situations, harmonious sharing of the benefits is an (Nash) equilibrium, but not unique. In all cases, institutional checks and balances are needed to guarantee mutual participation, which is possible only by strengthening the JFM management body. © 2014 Department of Forest Economics, Swedish University of Agricultural Sciences, Umeå.


Ghosh S.K.,Garhbeta College
Journal of Magnetism and Magnetic Materials | Year: 2016

The present investigation is the flow and heat transfer of a viscous fluid through a rotating channel about the vertical axis under the influence of transverse magnetic field. The linear temperature dependent density has been introduced along with the induced magnetic field in horizontal directions. To study the temperature distribution, the energy equation consisting of viscous dissipation and joule heating term is solved analytically. The velocity distribution in axial and vertical directions is found to be interesting such as the magnetic Reynolds number and the parameter appears due to buoyancy forces have a substantial contribution to influence the flow pattern. Also the results obtained in the study for magnetic induction variables as well as temperature distribution put forward some significant insight in the fluid flow and heat transfer. The important observation of the present study is that the temperature distribution takes the higher values in the vicinity of the upper wall and this happens due to the fact of buoyancy force and channel rotation. This is a key parameter to worm up or cool down the fluid in a useful purposes. © 2015 Elsevier B.V.

Loading Garhbeta College collaborators
Loading Garhbeta College collaborators