Entity

Time filter

Source Type

Incheon, South Korea

Shin J.-S.,Kyung Hee University | Yun C.H.,Kyung Hee University | Cho Y.-W.,Kyung Hee University | Baek N.-I.,Kyung Hee University | And 4 more authors.
Journal of Medicinal Food | Year: 2011

In an attempt to identify bioactive natural products with anti-inflammatory activity, we evaluated the anti-inflammatory potential of the indole-containing fraction from the roots of Brassica rapa (IBR) (Family Brassicaceae) and the underlying mechanisms. Initially, we examined the inhibitory effect of IBR on the production of pro-inflammatory mediators in vitro and then evaluated its in vivo anti-inflammatory effects. IBR was found to concentration-dependently reduce the productions of nitric oxide, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced macrophages. Consistent with these findings, IBR suppressed the LPS-induced expressions of inducible nitric oxide synthase (iNOS) at the protein level and of iNOS, TNF-α, and IL-6 at the mRNA level. Furthermore, IBR attenuated LPS-induced DNA-binding activities of nuclear factor-κB (NF-κB), and this was accompanied by a parallel reduction in the degradation and phosphorylation of inhibitory κBα and, consequently, by a reduction in the nuclear translocation of the p65 subunit of NF-κB. In addition, treatment with IBR inhibited carrageenan-induced paw edema in rats and acetic acid-induced writing response in mice. Taken together, our data suggest that the expressional inhibitions of iNOS, TNF-α, and IL-6 caused by an attenuation of NF-κB activation are responsible for the anti-inflammatory and antinociceptive activity of IBR. © 2011, Mary Ann Liebert, Inc. and Korean Society of Food Science and Nutrition. Source


Shin J.-S.,Kyung Hee University | Noh Y.-S.,Kyung Hee University | Lee Y.S.,Kyung Hee University | Cho Y.-W.,Kyung Hee University | And 6 more authors.
British Journal of Pharmacology | Year: 2011

BACKGROUND AND PURPOSE Brassica rapa species constitute one of the major sources of food. In the present study, we investigated the anti-inflammatory effects and the underlying molecular mechanism of arvelexin, isolated from B. rapa, on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and on a model of septic shock induced by LPS. EXPERIMENTAL APPROACH The expression of Inducible nitric oxide synthase (iNOS) and COX-2, TNF-α, IL-6 and IL-1β were determined by Western blot and/or RT-PCR respectively. To elucidate the underlying mechanism(s), activation of NF-κB activation and its pathways were investigated by electrophoretic mobility shift assay, reporter gene and Western blot assays. In addition, the in vivo anti-inflammatory effects of arvelexin were evaluated in endotoxaemia induced with LPS. KEY RESULTS Promoter assays for iNOS and COX-2 revealed that arvelexin inhibited LPS-induced NO and prostaglandin E 2 production through the suppression of iNOS and COX-2 at the level of gene transcription. In addition, arvelexin inhibited NF-κB-dependent inflammatory responses by modulating a series of intracellular events of IκB kinase (IKK)-inhibitor κBα (IκBα)-NF-κB signalling. Moreover, arvelexin inhibited IKKβ-elicited NF-κB activation as well as iNOS and COX-2 expression. Serum levels of NO and inflammatory cytokines and mortality in mice challenged injected with LPS were significantly reduced by arvelexin. CONCLUSION AND IMPLICATIONS Arvelexin down-regulated inflammatory iNOS, COX-2, TNF-α, IL-6 and IL-1β gene expression in macrophages interfering with the activation of IKKβ and p38 mitogen-activated protein kinase, and thus, preventing NF-κB activation. © 2011 The British Pharmacological Society. Source


Jeon S.-M.,Kyungpook National University | Kim J.-E.,Kyungpook National University | Shin S.-K.,Kyungpook National University | Kwon E.-Y.,Kyungpook National University | And 6 more authors.
Journal of Medicinal Food | Year: 2013

We evaluated the effects of Brassica rapa ethanol extract (BREE) on body composition and plasma lipid profiles through a randomized, double-blind, and placebo-controlled trial in overweight subjects. Fifty-eight overweight participants (age 20-50 years, body mass index23.0-24.9) were randomly assigned to two groups and served BREE (2 g/day) or placebo (starch, 2 g/day) for 10 weeks. Body compositions, nutrients intake, plasma lipids, adipocytokines, and hepatotoxicity biomarkers were assessed in all subjects at baseline and after 10 weeks of supplementation. The plasma total cholesterol (total-C) concentration was significantly increased after 10 weeks compared to the baseline in both groups. However, BREE supplementation significantly increased the high-density lipoprotein cholesterol (HDL-C) concentration and significantly reduced the total-C/HDL-C ratio, free fatty acid, and adipsin levels after 10 weeks. No significant differences were observed in body compositions, fasting blood glucose, plasma adipocytokines except adipsin, and aspartate aminotransferase and alanine aminotransferase activities between before and after trial within groups as well as between the two groups. The supplementation of BREE partially improves plasma lipid metabolism in overweight subjects without adverse effects. © Copyright 2013, Mary Ann Liebert, Inc. Source


Cho E.-J.,Kyung Hee University | Shin J.-S.,Kyung Hee University | Shin J.-S.,Reactive Oxygen Species Medical Research Center | Chung K.-S.,Kyung Hee University | And 6 more authors.
Journal of Agricultural and Food Chemistry | Year: 2012

Recently, we reported the anti-inflammatory effects of arvelexin isolated from Brassica rapa in macrophages. In the present study, the effects of arvelexin were investigated in a dextran sulfate sodium (DSS)-induced colitis mouse model and in a cellular model. In the DSS-induced colitis model, arvelexin significantly reduced the severity of colitis, as assessed by disease activity, colonic damage, neutrophil infiltration, and levels of colonic iNOS. Moreover, arvelexin inhibited the expressions of IL-8, IP-10, ICAM-1, and VCAM-1 in HT-29 colonic epithelial cells. Arvelexin also inhibited the TNF-α-induced adhesion of U937 monocytic cells to HT-29 cells. Furthermore, arvelexin reduced p65 NF-κB subunit translocation to the nucleus and IκBα degradation in the colonic tissues and in TNF-α-induced HT-29 cells. These results demonstrate that the ameliorative effects of arvelexin on colonic injury are mainly related to its ability to inhibit the inflammatory responses via NF-κB inactivation, and support its possible therapeutic role in colitis. © 2012 American Chemical Society. Source

Discover hidden collaborations