Entity

Time filter

Source Type

Oslo, Norway

Tu Z.,Wuhan University of Technology | Tang H.,Wuhan University of Technology | Shen X.,GandT Septech
ACS Applied Materials and Interfaces | Year: 2014

Recently, we have developed a semidirect breath figure (sDBF) method for direct fabrication of large-area and ordered honeycomb structures on commercial polystyrene (PS) Petri dishes without the use of an external polymer solution. In this work, we showed that both the pore size and the pore uniformity of the breath figure patterns were controllable by solvent amount. The cross-sectional image shows that only one layer of pores was formed on the BF figure patterns. By combing the sDBF method and Pickering emulsion and using the modular building blocks, we endowed the honeycomb-structured Petri dish with molecular recognition capability via the decoration of molecularly imprinted polymer (MIP) nanoparticles into the honeycomb pores. The radioligand binding experiments show that the MIP nanoparticles on the resultant honeycomb structures maintained high molecular binding selectivity. The reusability study indicates that MIP-BF patterns had excellent mechanical stability during the radioligand binding process. We believe that the modular approach demonstrated in this work will open up further opportunities for honeycomb structure-based chemical sensors for drug analysis, substrates for catalysts, and scaffold for cell growth. © 2014 American Chemical Society. Source


Huang C.,GandT Septech | Huang C.,University of Oslo | Kamra T.,Lund University | Chaudhary S.,Lund University | And 2 more authors.
ACS Applied Materials and Interfaces | Year: 2014

In this work, a simple breath figure method was proposed to directly fabricate large-area and ordered honeycomb structures on commercial PMMA substrates or PS Petri dishes without the use of an external polymer solution. The obtained honeycomb structure is indeed part of the substrate, providing the honeycomb layer with enough mechanical stability. The breath figure method in this work for the synthesis of honeycomb structure is extremely simple with scale-up capability to large-area production, which offers new insights into surface engineering with great potential in commercial technologies. For example, using the honeycomb-patterned Petri dishes prepared via this method, cells can be easily separated into divided aggregation, which favors understanding of naturally occurring networks in higher organisms and cell-cell and cell-matrix interactions, and the therapeutic control of genetic circuits. © 2014 American Chemical Society. Source


Huang C.,GandT Septech | Huang C.,University of Oslo | Shen X.,GandT Septech | Shen X.,Lund University
Chemical Communications | Year: 2014

By combining the specific molecular recognition capability of MIPs and the asymmetric structure of Janus particles, the Janus MIP particles which were synthesized via a wax-water Pickering emulsion showed attractive capabilities as self-propelled transporters for controlled drug delivery. This journal is © The Royal Society of Chemistry 2014. Source

Discover hidden collaborations