Toronto, Canada

Time filter

Source Type

Packaging solutions for devices and systems comprising lateral GaN power transistors are disclosed, including components of a packaging assembly, a semiconductor device structure, and a method of fabrication thereof In the packaging assembly, a GaN die, comprising one or more lateral GaN power transistors, is sandwiched between first and second leadframe layers, and interconnected using low inductance interconnections, without wirebonding. For thermal dissipation, the dual leadframe package assembly can be configured for either front-side or back-side cooling. Preferred embodiments facilitate alignment and registration of high current/low inductance interconnects for lateral GaN devices, in which contact areas or pads for source, drain and gate contacts are provided on the front-side of the GaN die. By eliminating wirebonding, and using low inductance interconnections with high electrical and thermal conductivity, PQFN technology can be adapted for packaging GaN die comprising one or more lateral GaN power transistors.


Packaging solutions for large area, GaN die comprising one or more lateral GaN power transistor devices and systems are disclosed. Packaging assemblies comprise an interposer sub-assembly comprising the lateral GaN die and a leadframe. The GaN die is electrically connected to the leadframe using bump or post interconnections, silver sintering, or other low inductance interconnections. Then, attachment of the GaN die to the substrate and the electrical connections of the leadframe to contacts on the substrate are made in a single process step. The sub-assembly may be mounted in a standard power module, or alternatively on a substrate, such as a printed circuit board. For high current applications, the sub-assembly also comprises a ceramic substrate for heat dissipation. This packaging scheme provides interconnections with lower inductance and higher current capacity, simplifies fabrication, and enables improved thermal matching of components, compared with conventional wirebonded power modules.


Driver circuitry for switching systems comprising enhancement mode (E-Mode) GaN power transistors with low threshold voltage is disclosed. An E-Mode high electron mobility transistor (HEMT) D3 has a monolithically integrated GaN driver, comprising smaller E-Mode GaN HEMTs D1 and D2, and a discrete dual-voltage pre-driver. In operation, D1 provides the gate drive voltage to the gate of the GaN switch D3, and D2 clamps the gate of the GaN switch D3 to the source, via an internal source-sense connection closely coupling the source of D3 and the source of D2. An additional source-sense connection is provided for the pre-driver. Boosting the drive voltage to the gate of D1 produces firm and rapid pull-up of D1 and D3 for improved switching performance at higher switching speeds. High current handling components of the driver circuitry are integrated with the GaN switch and closely coupled to reduce inductance, while the discrete pre-driver can be thermally separated from the GaN chip.


Devices and systems comprising high current/high voltage GaN semiconductor devices are disclosed. A GaN die, comprising a lateral GaN transistor, is sandwiched between an overlying header and an underlying composite thermal dielectric layer. Fabrication comprises providing a conventional GaN device structure fabricated on a low cost silicon substrate (GaN-on-Si die), mechanically and electrically attaching source, drain and gate contact pads of the GaN-on-Si die to corresponding contact areas of conductive tracks of the header, then entirely removing the silicon substrate. The exposed substrate-surface of the epi-layer stack is coated with the composite dielectric thermal layer. Preferably, the header comprises a ceramic dielectric support layer having a CTE matched to the GaN epi-layer stack. The thermal dielectric layer comprises a high dielectric strength thermoplastic polymer and a dielectric filler having a high thermal conductivity. This structure offers improved electrical breakdown resistance and effective thermal dissipation compared to conventional GaN-on-Si device structures.


A fault tolerant design for large area nitride semiconductor devices is provided, which facilitates testing and isolation of defective areas. A transistor comprises an array of a plurality of islands, each island comprising an active region, source and drain electrodes, and a gate electrode. Electrodes of each island are electrically isolated from electrodes of neighbouring islands in at least one direction of the array. Source, drain and gate contact pads are provided to enable electrical testing of each island. After electrical testing of islands to identify defective islands, overlying electrical connections are formed to interconnect source electrodes in parallel, drain electrodes in parallel, and to interconnect gate electrodes to form a common gate electrode of large gate width Wg. Interconnections are provided selectively to good islands, while electrically isolating defective islands. This approach makes it economically feasible to fabricate large area GaN devices, including hybrid devices.


Power switching systems are disclosed comprising driver circuitry for enhancement-mode (E-Mode) GaN power transistors with low threshold voltage. Preferably, a GaN power switch (D3) comprises an E-Mode high electron mobility transistor (HEMT) with a monolithically integrated GaN driver. D3 is partitioned into sections. At least the pull-down and, optionally, the pull-up driver circuitry is similarly partitioned as a plurality of driver elements, each driving a respective section of D3. Each driver element is placed in proximity to a respective section of D3, reducing interconnect track length and loop inductance. In preferred embodiments, the layout of GaN transistor switch and the driver elements, dimensions and routing of the interconnect tracks are selected to further reduce loop inductance and optimize performance. Distributed driver circuitry integrated on-chip with one or more high power E-Mode GaN switches allows closer coupling of the driver circuitry and the GaN switches to reduce effects of parasitic inductances.


Patent
GaN Systems | Date: 2015-04-08

A semiconductor device in provided having a substrate and a semiconductor layer formed on a main surface of the substrate. A plurality of first island electrodes and a plurality of second island electrodes are placed over the semiconductor layer. The plurality of first island electrodes and second island electrodes are spaced apart from each other so as to be alternatively arranged to produce two-dimensional active regions in all feasible areas of the semiconductor layer. Each side of the first island electrodes is opposite a side of the second island electrodes. The semiconductor device can also include a plurality of strip electrodes that are formed in the regions between the first island electrodes and the second island electrodes. The strip electrodes serve as the gate electrodes of a multi-island transistor. The first island electrodes serve as the source electrodes of the multi-island transistor. The second island electrodes serve as the drain electrodes of the multi-island transistor. A plurality of connections to the gate electrodes are provided at each interstice defined by corners of the first island electrodes and the second island electrodes.


Packaging solutions for devices and systems comprising lateral GaN power transistors are disclosed, including components of a packaging assembly, a semiconductor device structure, and a method of fabrication thereof. In the packaging assembly, a GaN die, comprising one or more lateral GaN power transistors, is sandwiched between first and second leadframe layers, and interconnected using low inductance interconnections, without wirebonding. For thermal dissipation, the dual leadframe package assembly can be configured for either front-side or back-side cooling. Preferred embodiments facilitate alignment and registration of high current/low inductance interconnects for lateral GaN devices, in which contact areas or pads for source, drain and gate contacts are provided on the front-side of the GaN die. By eliminating wirebonding, and using low inductance interconnections with high electrical and thermal conductivity, PQFN technology can be adapted for packaging GaN die comprising one or more lateral GaN power transistors.


An integrated gate protection device P for a GaN power transistor D1 provides negative ESD spike protection. Protection device P comprises a smaller gate width w_(g )enhancement mode GaN transistor Pm. The source of Pm is connected to its gate, the drain of Pm is connected to the gate input of D1, and the source of Pm is connected to the intrinsic source of D1. When the gate input voltage is taken negative below the threshold voltage for reverse conduction, Pm conducts and quenches negative voltage spikes. When device P comprises a plurality of GaN protection transistors P1 to Pn, connected in series, it turns on when the gate input voltage applied to the drain of P1 goes negative by more than the sum of the threshold voltages of P1 to Pn. The combined gate width of P1 to Pn is selected to limit the gate voltage excursion of D1.


Embedded packaging for devices and systems comprising lateral GaN power transistors is disclosed. The packaging assembly is suitable for large area, high power GaN transistors and comprises an assembly of a GaN power transistor and package components comprising a three level interconnect structure. In preferred embodiments, the three level interconnect structure comprises an on-chip metal layer, a copper redistribution layer and package metal layers, in which there is a graduated or tapered contact area sizing through the three levels for dividing/applying current on-chip and combining/collecting current off-chip, with distributed contacts over the active area of the GaN power device. This embedded packaging assembly provides a low inductance, low resistance interconnect structure suitable for devices and systems comprising large area, high power GaN transistors for high voltage/high current applications.

Loading GaN Systems collaborators
Loading GaN Systems collaborators