Entity

Time filter

Source Type


Tosi L.,Tesa | Teatini P.,Tesa | Teatini P.,University of Padua | Simonini P.,University of Padua | Strozzi T.,Gamma Remote Sensing AG
Surveys in Geophysics | Year: 2012

Persistent scatterer interferometry (PSI) provides a new perspective to monitor the movements of coastal structures due to long-term consolidation using satellite-borne remote sensors. The method has the advantages of detecting the displacements at a very high spatial (from 1 to a few meters) and temporal (from 10 to 30 days) resolution. Cost-effective monitoring of complex and large (some kilometer long) structures can be done over long time (up to 10 years) intervals and at large scales (tens times tens km 2) of investigation. Here, these measurements are integrated with geotechnical, site-specific measurements to characterize in a unique framework the long-term compressibility of coastal soils over large areas. The approach is tested on the 60-km-long coastland of the Venice Lagoon, Italy. An accurate quantification of the movements of coastal infrastructures at the Venice coastland is carried out by PSI using ENVISAT ASAR and TerraSAR-X images acquired from April 2003 to December 2009 and from March 2008 to January 2009, respectively. Several nearshore and offshore structures were constructed over the decades to protect Venice and its coastal environment from sea storms and high tides. Long jetties were built at the lagoon inlets since the end of the 18th century, significantly reinforced between 1994 and 1997, and finally reshaped since 2003 in the framework of the MOSE construction (i. e., the project of mobile barriers for the temporarily closure of the lagoon to the sea). The measured displacements range from a few mm/year for the structures older than 10 years to 50-70 mm/year for those realized a few years ago. The PSI measurements are combined with the outcome of a detailed geomechanical characterization of the lagoon subsoil obtained by a field-scale experiment started at the end of 2002 and monitored to 2008. The use of the stress-strain properties derived from the trial embankment and the actual lithostratigraphy below the coastal structures, which is available from several piezocone profiles and boreholes, allows for the computation of secondary compression (consolidation) rates that match very well the PSI-derived movements. The results provide important information on the potential of using PSI to characterizing geotechnical properties (magnitude and distribution) of coastal deposits, as well as to estimate the expected time-dependent geomechanical response of coastal structures or other large constructions. © 2012 Springer Science+Business Media B.V. Source


Frey O.,ETH Zurich | Frey O.,Gamma Remote Sensing AG | Meier E.,University of Zurich
IEEE Transactions on Geoscience and Remote Sensing | Year: 2011

In this paper, a time-domain back-projection based tomographic processing approach to a 3-D reconstruction grid is detailed, with the focusing in the third dimension being either modified versions of multilook standard beamforming, robust Capon beamforming, or multiple signal classification. The novel feature of the proposed approach compared to previous synthetic aperture radar (SAR) tomography approaches is that it allows for an approximation-free height-dependent calculation of the sample covariance matrix by exploiting the azimuth-focused data on the 3-D reconstruction grid. The method is applied to experimental multibaseline quad-pol SAR data at L-and P-bands acquired by German Aerospace Center's (DLR) E-SAR sensor: Tomographic images of a partially forested area, including a 3-D voxel plot that visualizes the very high level of detail of the tomographic image, are shown, and an analysis of the focusing performance is given for the full as well as reduced synthetic aperture in the normal direction. © 2011 IEEE. Source


Tanase M.A.,University of Zaragoza | Perez-Cabello F.,University of Zaragoza | De La Riva J.,University of Zaragoza | Santoro M.,Gamma Remote Sensing AG
IEEE Transactions on Geoscience and Remote Sensing | Year: 2010

TerraSAR-X (TSX) dual-polarized synthetic aperture radar (SAR) data from a test site in Spain have been investigated to determine the relationship between forest burn severity and SAR backscatter. The role of the local incidence angle on the backscatter coefficient has been also studied. Burn severity was estimated by means of composition burn index plots and the remotely sensed differenced normalized burn ratio index. To infer the potential of the TSX data for burn severity assessment, the determination coefficients obtained from linear regression analysis have been used. At horizontal transmit horizontal receive (HH) polarization, backscatter increased for slopes oriented toward the sensor and areas affected by high burn severity, whereas, at horizontal transmit vertical receive (HV) polarization, higher backscatter occurred for slopes oriented away from the sensor in areas of low burn severity. The dependence of the backscatter coefficient on topography for areas affected by forest fire has been confirmed. The HH backscatter presented a clear descending trend with the increase in local incidence angle, whereas the HV backscatter presented an ascending trend. The determination coefficients showed that, at HH polarization, better estimates of burn severity are obtained at low local incidence angles, whereas, for HV polarization, the best estimates are obtained at high local incidence angles. The dual-polarized X-band SAR data showed potential for burn severity estimation in the Mediterranean environment if local incidence angle is accounted for. © 2009 IEEE. Source


Caduff R.,University of Bern | Caduff R.,Gamma Remote Sensing AG | Rieke-Zapp D.,Breuckmann GmbH
Photogrammetric Record | Year: 2014

This paper describes a general workflow for the registration of terrestrial radar interferometric data with 3D point clouds derived from terrestrial photogrammetry and structure from motion. After the determination of intrinsic and extrinsic orientation parameters, data obtained by terrestrial radar interferometry were projected on point clouds and then on the initial photographs. Visualisation of slope deformation measurements on photographs provides an easily understandable and distributable information product, especially of inaccessible target areas such as steep rock walls or in rockfall run-out zones. The suitability and error propagation of the referencing steps and final visualisation of four approaches are compared: (a) the classic approach using a metric camera and stereo-image photogrammetry; (b) images acquired with a metric camera, automatically processed using structure from motion; (c) images acquired with a digital compact camera, processed with structure from motion; and (d) a markerless approach, using images acquired with a digital compact camera using structure from motion without artificial ground control points. The usability of the completely markerless approach for the visualisation of high-resolution radar interferometry assists the production of visualisation products for interpretation. © 2014 The Remote Sensing and Photogrammetry Society and John Wiley & Sons Ltd. Source


Tanase M.A.,University of Melbourne | Santoro M.,Gamma Remote Sensing AG | Aponte C.,University of Melbourne | De La Riva J.,University of Zaragoza
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | Year: 2014

Fully polarimetric C- and L-band synthetic aperture radar (SAR) data have been investigated to determine the relationship between polarimetric target decomposition components and forest burn severity over two sites located in a Mediterranean environment. The dependence of the polarimetric decomposition metrics on SAR acquisition geometry and environmental conditions was also analyzed at C-band. Multiple linear regression models with interactions (i.e., the incidence angle was included as a predictor variable and its interaction with the radar metrics was accounted for as a multiplicative effect) were used to quantify burn severity retrieval accuracy. According to our experiment, we found that for steep SAR acquisition geometries C-band polarimetric components related to surface scattering mechanisms had increased sensitivity to burn severity levels, while for datasets acquired with more grazing geometries the polarimetric components related to volume scattering and dihedral scattering mechanisms were more correlated with burn severity levels. At L-band only volume and dihedral scattering related decomposition components provided significant relationships with burn severity levels. Relatively low burn severity estimation errors (less than 20% of burn severity range) were obtained for all datasets, with L-band data presenting the highest sensitivity to fire effects. Using a single regression model provided sufficient accuracy for burn severity estimation when taking into account the local incidence angle. The use of fully polarimetric data improved the estimation accuracy of forest burn severity with respect to backscatter intensities by a small margin for our study sites. However, since backscatter intensity metrics already provide high retrieval accuracies, whatever improvement was bound to be low. © 2013 IEEE. Source

Discover hidden collaborations