Entity

Time filter

Source Type

Bayreuth, Germany

Schweiss R.,SGL Carbon GmbH | Steeb M.,SGL Carbon GmbH | Wilde P.M.,SGL Carbon GmbH | Schubert T.,FutureCarbon GmbH
Journal of Power Sources | Year: 2012

Microporous layers (MPLs) of gas diffusion layers (GDLs) were modified by multiwall carbon nanotubes (MWCNTs) using a wet-chemical approach. Carbon nanotubes were dispersed along with other MPL components and coated onto a GDL backing. The electronic resistance of the GDL was significantly reduced by the addition of MWCNTs. A larger mean pore diameter was obtained as compared to the reference substrates. The improved performance of proton exchange membrane fuel cells (PEMFCs) using such CNT-doped GDLs is attributed to a lower electronic resistance along with improved mass transport. Synergy effects of different carbon materials with MWCNTs and advanced dispersion processes were found to play a key role in achieving the performance improvements. © 2012 Elsevier B.V. All rights reserved.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: NMP-2007-2.1-1 | Award Amount: 7.39M | Year: 2008

High aspect ratio carbon-based nanoparticles (nanotubes (CNT), nanofibres (CNF), and nanosheets or exfoliated graphite (CNS)) will be introduced into bulk polymers, into polymeric foams and into membranes. It is expected that such nanofillers will tremendously improve and modify the properties of these families of materials, allowing them to reach new markets. However, a common and fundamental problem in polymer-based nanocomposites is the large extent of agglomeration of the nanoparticles due to their high surface to volume ratio. Therefore, techniques to control deagglomeration and possibly further organization of these high aspect ratio nanoparticles in polymeric materials remain a challenge. This project under industrial leadership will therefore aim at mastering, at the nanometric and mesoscale level, the spatial organization of carbon-based nanoparticles (CNP) with various surface functionalities, sizes and shapes having large aspect ratios in bulk, foamed and thin film (membranes) polymers by using industrially viable processes. More precisely, the aim of this proposal consists in generating polymer-based nanocomposites with a percolating nanoparticle structure that is reinforcing the material and imparts it with improved electrical and thermal conductivity at a minimum of nanoparticle loading. To reach such radically improved properties, it is important to take into account that a complete dispersion is not useful and will lead to lower properties. In order to control this CNP organization within the polymer matrix, a large set of techniques will be used. They range from synthetic approaches (grafting from, grafting to, grafting through, emulsion polymerization) to (reactive) melt or solution blending processes, and to preparation in supercritical CO2. The aim is to generate new classes of engineering materials for various applications like EMI shielding, antistatic packaging materials and membranes, as well as scaffolds for tissue engineering.


Grant
Agency: Cordis | Branch: FP7 | Program: MC-IAPP | Phase: FP7-PEOPLE-2009-IAPP | Award Amount: 520.12K | Year: 2010

The principal focus of this project is to synthesise carbon nanomaterials and composites with enhanced mechanical and electrical performance using a novel alternative technology. Carbon nanoparticles and polymer composites are formed from the dissociation of critically opalescent fluids via a UV laser. The aim is to produce such materials in a continuous process where the produced material or composite material is synthesised with its final desirable properties in a single to low number of chemistry steps. The project explores the potential of this novel process for the production of new carbon nanomaterials in close collaboration between an academic partner and an SME with the objectives to produce various carbon nanostructures from critically opalescent fluids, to produce carbon nanomaterials with increased electric conductivity, to produce composite materials with improved mechanical properties, to characterise the properties of the produced carbon nanomaterials, to optimise the process conditions and control the resulting structure of the carbon materials, to develop processes suitable for industrial application, to establish new links between academia and SME, to provide access to academic knowledge and infrastructure to industrial partner and vice versa, and to provide staff in industry and academia with transferable skills. The work programme to achieve these goals includes production of novel carbon nanomaterials from carbon dioxide in batch process (specifically carbon nanotubes, carbon nanofibres, carbon platelets, graphene, carbon layers with controlled dielectric properties, and cross-linked polymer composites), construction of a carbon dioxide reactor system for continuous flow process, production of carbon nanomaterials in continuous flow process, analysis of novel carbon nanomaterials, market analysis, risk assessment, selection and optimization of processes for scale-up, and an intensive knowledge transfer programme.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: ENERGY-2007-1.2-04 | Award Amount: 3.40M | Year: 2008

In order to meet the international goals for hydrogen storage materials, the work in NANOHy aims at combining the latest developments in the metal hydride field with novel concepts for tailoring materials properties. Leading expertise in the field of complex hydride synthesis, synthesis and functionalization of nanostructured carbon, nanoparticle coating, structural characterization, and computational methods will be joined to achieve a fundamental understanding combined with considerable practical progress in the development of novel nanostructured materials for hydrogen storage. The target materials are nanocomposites consisting of hydride particle sizes in the lower nanometer range which are protected by a nanocarbon template or by self-assembled polymer layers in order to prevent agglomeration. Thus, there is potential to lower working temperature and pressure, to enhance the reversibility, and to control the interaction between the hydride and the environment, leading to improved safety properties. Materials of this kind can mitigate or solve principal and practical problems which have been identified recently in other projects. The composites will be synthesized out of novel complex hydrides with very high hydrogen content and nanocarbon templates. Alternatively, hydride colloids will be coated in a Layer-by-Layer self-assembling process of dedicated polymers. Computational methods will be used to model the systems and predict optimal materials/size combinations for improved working parameters of the systems. Sophisticated instrumental analysis methods will be applied to elucidate the structure and the properties of the nano-confined hydrides. An upscale of the target nanocomposite will be made in the final stage and 0.5-1 kg of the material will be integrated and tested in a specially designed laboratory tank. Techno-economical evaluation will be performed and potential spin-off applications will be explored by an industry partner in NANOHy.


The present invention relates to a method for producing carbon nanomaterials and/or carbon micromaterials, in particular multi-wall carbon nanotubes. The method is characterized according to the invention in that at least one molecule that has a reactive group in terminal position is bound to the surface of the material. In addition, the invention also relates to a correspondingly modified material.

Discover hidden collaborations