Furzehill House

Swansea, United Kingdom

Furzehill House

Swansea, United Kingdom
SEARCH FILTERS
Time filter
Source Type

Namekata K.,Kyoto University | Isogai K.,Kyoto University | Kato T.,Kyoto University | Littlefield C.,University of Notre Dame | And 41 more authors.
Publications of the Astronomical Society of Japan | Year: 2017

We report on a superoutburst of a WZ Sge-type dwarf nova (DN), ASASSN-15po. The light curve showed the main superoutburst and multiple rebrightenings. In this outburst, we observed early superhumps and growing (stage A) superhumps with periods of 0.050454(2) and 0.051809(13) d, respectively. We estimated that the mass ratio of secondary to primary (q) is 0.0699(8) by using Porb and a superhump period PSH of stage A. ASASSN-15po [Porb ∼ 72.6 min] is the first DN with an orbital period between 67-76 min. Although the theoretical predicted period minimum Pmin of hydrogen-rich cataclysmic variables (CVs) is about 65-70 min, the observational cut-off of the orbital period distribution at 80 min implies that the period minimum is about 82min, and the value is widely accepted. We suggest the following four possibilities: the object is (1) a theoretical period minimum object, (2) a binary with a evolved secondary, (3) a binary with a metal-poor (Popullation II) seconday, or (4) a binary which was born with a brown-dwarf donor below the period minimum.


Galan C.,Nicolaus Copernicus University | Galan C.,Olsztyn Planetarium and Astronomical Observatory | Mikolajewski M.,Nicolaus Copernicus University | Tomov T.,Nicolaus Copernicus University | And 99 more authors.
Astronomy and Astrophysics | Year: 2012

Context. EE Cep is an unusual long-period (5.6 yr) eclipsing binary discovered during the mid-twentieth century. It undergoes almost-grey eclipses that vary in terms of both depth and duration at different epochs. The system consists of a Be type star and a dark dusty disk around an invisible companion. EE Cep together with the widely studied ε Aur are the only two known cases of long-period eclipsing binaries with a dark, dusty disk component responsible for periodic obscurations. Aims. Two observational campaigns were carried out during the eclipses of EE Cep in 2003 and 2008/9 to verify whether the eclipsing body in the system is indeed a dark disk and to understand the observed changes in the depths and durations of the eclipses. Methods. Multicolour photometric data and spectroscopic observations performed at both low and high resolutions were collected with several dozen instruments located in Europe and North America. We numerically modelled the variations in brightness and colour during the eclipses. We tested models with different disk structure, taking into consideration the inhomogeneous surface brightness of the Be star. We considered the possibility of disk precession. Results. The complete set of observational data collected during the last three eclipses are made available to the astronomical community. The 2003 and 2008/9 eclipses of EE Cep were very shallow. The latter is the shallowest among all observed. The very high quality photometric data illustrate in detail the colour evolution during the eclipses for the first time. Two blue maxima in the colour indices were detected during these two eclipses, one before and one after the photometric minimum. The first (stronger) blue maximum is simultaneous with a "bump" that is very clear in all the UBV(RI)C light curves. A temporary increase in the I-band brightness at the orbital phase ∼0.2 was observed after each of the last three eclipses. Variations in the spectral line profiles seem to be recurrent during each cycle. The Na i lines always show at least three absorption components during the eclipse minimum and strong absorption is superimposed on the Hα emission. Conclusions. These observations confirm that the eclipsing object in EE Cep system is indeed a dark, dusty disk around a low luminosity object. The primary appears to be a rapidly rotating Be star that is strongly darkened at the equator and brightened at the poles. Some of the conclusions of this work require verification in future studies: (i) a complex, possibly multi-ring structure of the disk in EE Cep; (ii) our explanation of the "bump" observed during the last two eclipses in terms of the different times of obscuration of the hot polar regions of the Be star by the disk; and (iii) our suggested period of the disk precession (∼11-12 Porb) and predicted depth of about 2m ̇ for the forthcoming eclipse in 2014. © 2012 ESO.


Kato T.,Kyoto University | Hambsch F.-J.,Groupe Europeen dObservations Stellaires GEOS | Maehara H.,University of Tokyo | Maehara H.,Kyoto University | And 87 more authors.
Publications of the Astronomical Society of Japan | Year: 2014

Continuing the project described in Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for SU UMa-type dwarf novae mainly observed during the 2012-2013 season. We found three objects (V444 Peg, CSS J203937, and MASTER J212624) having strongly positive period derivatives despite the long orbital period (Porb). By using the period of growing stage (stage A) superhumps, we obtained mass ratios for six objects. We characterized nine new WZ Sge-type dwarf novae. We made a pilot survey of the decline rate in the slowly fading parts of SU UMa-type and WZ Sge-type outbursts. The decline time scale was found to generally follow an expected Porb 1/4 dependence, and WZ Sge-type outbursts also generally follow this trend. There are some objects which show slower decline rates, and we consider these objects good candidates for period bouncers. We also studied unusual behavior in some objects, including BK Lyn which made a transition from an ER UMa-type state to a novalike (standstill) state in 2013, and unusually frequent occurrences of superoutbursts in NY Ser and CR Boo. We applied the least absolute shrinkage and selection operator (Lasso) power spectral analysis, which has been proven to be very effective in analyzing the Kepler data, to the ground-based photometry of BK Lyn, and detected a dramatic disappearance of the signal of negative superhumps in 2013. We suggested that the mass-transfer rates did not strongly vary between the ER UMa-type state and novalike state in BK Lyn, and this transition was less likely caused by a systematic variation of the mass-transfer rate. © 2014 The Author.


Ohshima T.,Kyoto University | Kato T.,Kyoto University | Pavlenko E.,Crimean Astrophysical Observatory | Akazawa H.,Okayama University of Science | And 45 more authors.
Publications of the Astronomical Society of Japan | Year: 2014

We carried out photometric observations of the SUUMa-type dwarf nova ERUMa during 2011 and 2012, which showed the existence of persistent negative superhumps even during the superoutburst. We performed a two-dimensional period analysis of its light curves by using a method called "least absolute shrinkage and selection operator" (Lasso) and the "phase dispersion minimization" (PDM) analysis, and found that the period of negative superhumps systematically changed between a superoutburst and the next superoutburst. The trend of the period change can be interpreted as a reflection of the change of the disk radius. This change is in agreement with the one predicted by the thermal tidal instability model. The normal outburst during a supercycle showed a general trend that the rising rate to its maximum becomes slower as the next superoutburst is approaching. The change can be interpreted as the consequence of the increased gas-stream flow into the inner region of the disk as a result of the tilted disk. Some of superoutbursts were found to be triggered by a precursor normal outburst when the positive superhump appeared to develop. The positive and negative superhumps coexisted during the superoutburst. Positive superhumps were prominent only for four or five days after the supermaximum, while the signal of negative superhumps became stronger after the middle phase of the superoutburst plateau. A simple combination of the positive and negative superhumps was found to be insufficient for reproduction of the complex profile variation. We were able to detect the developing phase of positive superhumps (stage A superhumps) for the first time in ER UMa-type dwarf novae. Using the period of stage A superhumps, we obtained a mass ratio of 0.100(15), which indicates that ERUMa is on the ordinary evolutional track of cataclysmic variable stars. © The Author 2014.


Kato T.,Kyoto University | Ohshima T.,Kyoto University | Denisenko D.,Russian Academy of Sciences | Dubovsky P.A.,Vihorlat Observatory | And 36 more authors.
Publications of the Astronomical Society of Japan | Year: 2014

We report on a superoutburst of the AM CVn-type object SDSSJ090221.35+381941.9 [J0902; orbital period 0.03355(6) d] in 2014 March-April. The entire superoutburst consisted of a precursor outburst and the main superoutburst, followed by a short rebrightening. During the rising phase of the main superoutburst, we detected growing superhumps (stage A superhumps) with a period of 0.03409(1) d. During the plateau phase of the superoutburst, superhumps with a shorter period (stage B superhumps) were observed. Using the orbital period and the period of stage A superhumps, we were able to measure the dynamical precession rate of the accretion disk at the 3:1 resonance, and obtained a mass ratio (q) of 0.041(7). This is the first successful measurement of the mass ratio in an AM CVn-type object accomplished by the recently developed stage A superhump method. The value is generally in agreement with that based on the theoretical evolutionary model. The orbital period of J0902 is the longest among those of the outbursting AM CVn-type objects, and a period on the borderline between the outbursting system and the system with a stable cool disk appears to be longer than one supposed. © The Author 2014. Published by Oxford University Press on behalf of the Astronomical Society of Japan.


Kato T.,Kyoto University | Hambsch F.-J.,Groupe Europeen dObservations Stellaires GEOS | Dubovsky P.A.,Vihorlat Observatory | Kudzej I.,Vihorlat Observatory | And 92 more authors.
Publications of the Astronomical Society of Japan | Year: 2015

Continuing the project described by Kato et al. (2009, PASJ, 61, S395), we collected times of superhump maxima for 102 SU UMa-type dwarf novae, observed mainly during the 2014-2015 season, and characterized these objects. Our project has greatly improved the statistics of the distribution of orbital periods, which is a good approximation of the distribution of cataclysmic variables at the terminal evolutionary stage, and has confirmed the presence of a period minimum at a period of 0.053 d and a period spike just above this period. The number density monotonically decreased toward the longer period and there was no strong indication of a period gap. We detected possible negative superhumps in Z Cha. It is possible that normal outbursts are also suppressed by the presence of a disk tilt in this system. There was no indication of enhanced orbital humps just preceding the superoutburst, and this result favors the thermal-tidal disk instability as the origin of superoutbursts. We detected superhumps in three AM CVn-type dwarf novae. Our observations and recent other detections suggest that 8% of objects showing dwarf nova-type outbursts are AM CVn-type objects. AM CVn-type objects and EI Psc-type objects may be more abundant than previously recognized. OT J213806, a WZ Sge-type object, exhibited remarkably different features between the 2010 and 2014 superoutbursts. Although the 2014 superoutburst was much fainter, the plateau phase was shorter than the 2010 one, and the course of the rebrightening phase was similar. This object indicates that the O - C diagrams of superhumps can indeed be variable, at least in WZ Sge-type objects. Four deeply eclipsing SU UMa-type dwarf novae (ASASSN-13cx, ASASSN-14ag, ASASSN-15bu, and NSV 4618) were identified. We studied long-term trends in supercycles in MM Hya and CY UMa and found systematic variations of supercycles of ∼20%. © The Author 2015. Published by Oxford University Press on behalf of the Astronomical Society of Japan. All rights reserved.


Kato T.,Kyoto University | Pavlenko E.P.,Crimean Astrophysical Observatory | Shchurova A.V.,Taras Shevchenko National University | Sosnovskij A.A.,Crimean Astrophysical Observatory | And 17 more authors.
Publications of the Astronomical Society of Japan | Year: 2016

We observed the 2015 July-August long outburst of V1006 Cyg and established this object to be an SU UMa-type dwarf nova in the period gap. Our observations have confirmed that V1006 Cyg is the second established object showing three types of outbursts (normal, long normal, and superoutbursts) after TU Men. We have succeeded in recording the growing stage of superhumps (stage A superhumps) and obtained a mass ratio of 0.26-0.33, which is close to the stability limit of tidal instability. This identification of stage A superhumps demonstrates that superhumps indeed slowly grow in systems near the stability limit, the idea first introduced by Kato et al. (2014, PASJ, 66, 90). The superoutburst showed a temporary dip followed by a rebrightening. The moment of the dip coincided with the stage transition of superhumps, and we suggest that stage C superhumps are related to the start of the cooling wave in the accretion disk. We interpret that the tidal instability was not strong enough to maintain the disk in the hot state when the cooling wave started. We propose that the properties commonly seen in the extreme ends of mass ratios (WZ Sge-type objects and long-period systems) can be understood as a result of weak tidal effect. © 2016 The Author.


Kato T.,Kyoto University | Maehara H.,Kyoto University | Uemura M.,Hiroshima University | Henden A.,American Association of Variable Star Observers AAVSO | And 57 more authors.
Publications of the Astronomical Society of Japan | Year: 2010

Continued from Kato et al. (2009, PASJ, 61, S395), we collected the times of superhump maxima for 68 SU UMa-type dwarf novae, mainly observed during the 2009-2010 season. The newly obtained data confirmed the basic findings reported in Kato et al. (ibid.): the presence of stages A-C and the predominance of positive period derivatives during stage B in systems with superhump periods shorter than 0.07 d. There was a systematic difference in the period derivatives for the systems with superhump periods longer than 0.075 d between this study and Kato et al. (ibid.). We suggest that this difference was possibly caused by a relative lack of frequently outbursting SU UMa-type dwarf novae in this period regime in the present study. We recorded a strong beat phenomenon during the 2009 superoutburst of IY UMa. A close correlation between the beat period and the superhump period suggests that the changing angular velocity of the apsidal motion of the elliptical disk is responsible for the variation of the superhump periods. We also described three new WZ Sge-type objects with established early superhumps and one with likely early superhumps. We suggest that two systems, VX For and EL UMa, are WZ Sge-type dwarf novae with multiple rebrightenings. The O -C variation in OT J213806.6+261957 suggests that the frequent absence of rebrightenings in very short-Porb objects can be the result of a sustained superoutburst plateau at the epoch when usual SU UMa-type dwarf novae return to quiescence, preceding a rebrightening. We also present a formulation for a variety of Bayesian extensions to traditional period analyses. © 2010. Astronomical Society of Japan.


Kimura M.,Kyoto University | Isogai K.,Kyoto University | Kato T.,Kyoto University | Imada A.,Kyoto University | And 20 more authors.
Publications of the Astronomical Society of Japan | Year: 2016

We present optical photometry of aWZ Sge-type dwarf nova (DN), ASASSN-15jd. Its light curve showed a small dip in the middle of the superoutburst in 2015 for the first time among WZ Sge-type DNe. The unusual light curve implies a delay in the growth of the 3 : 1 resonance tidal instability. Also, the light curve is similar to those of two other WZ Sge-type stars, SSS J122221.7-311523 and OT J184228.1+483742, which are believed to be the best candidates for period bouncers on the basis of their small values of the mass ratio (q = M2/M1). Additionally, the small mean superhump amplitude (<0.1mag) and the long duration of no ordinary superhumps at the early stage of its superoutburst are common to the best candidates for period bouncers. Its average superhump period was Psh = 0.0649810(78) d and no early superhumps were detected. Although we could not estimate a mass ratio of ASASSN-15jd with high accuracy, this object is expected to be a candidate for a period bouncer-a binary accounting for the missing population of post-period minimum cataclysmic variables-based on the above characteristics. © The Author 2016.

Loading Furzehill House collaborators
Loading Furzehill House collaborators