Time filter

Source Type

Patent
The Furukawa Battery Co., Sumitomo Osaka Cement and Tokyo Metroplitan University | Date: 2014-08-14

A method of manufacturing a multicomponent lithium phosphate compound particle with an olivine structure of formula Li_(y)M1_(1-Z)M2_(Z)PO_(4), M1 is Fe, Mn or Co; Y satisfies 0.9Y1.2; M2 is Mn, Co, Mg, Ti or Al; and Z satisfies 0


Patent
The Furukawa Battery Co. and Furukawa Electric Group | Date: 2013-10-04

The object of the present invention is to provide a lithium transition metal silicate-type cathode active material that shows superior cycle characteristics, and shows little deterioration of discharge capacity even after repeated charge-and-discharge. In the present invention, a cathode active material that is expressed by the general formula Li_(2-y)Fe_(1-x)M_(x)Si_(1-y)X_(y)O_(4 )(M=at least one transition metal selected from the group consisting of Mn, Ti, Cr, V, Ni, Co, Cu, Zn, Al, Ge, Zr, Mo, W; X=at least one element selected from the group consisting of Ti, Cr, V, Zr, Mo, W, P, B; 0x<1, 0y<0.25), and contains a lithium transition metal silicate, which comprises a mixed phase of an orthorhombic-type structure with a space group Pmn2_(1 )symmetry, and a monoclinic-type structure with a space group P2_(1)/n symmetry, is provided.


Patent
The Furukawa Battery Co. and Furukawa Electric Group | Date: 2013-05-08

A nanosized particle has a first phase that is a simple substance or a solid solution of element A, which is Si, Sn, Al, Pb, Sb, Bi, Ge, In or Zn, and a second phase that is a compound of element D, which is Fe, Co, Ni, Ca, Sc, Ti, V, Cr, Mn, Sr, Y, Zr, Nb, Mo, Ru, Rh, Ba, lanthanoid elements (not including Ce and Pm), Hf, Ta, W or Ir, and element A, or a compound of element A and element M, which is Cu, Ag, or Au. The first phase and second phase are bound via an interface, and are exposed to the outer surface. The surface of the first phase other than the interface is approximately spherical. Furthermore, a lithium ion secondary battery includes the nanosized particle as an anode active material.


Patent
The Furukawa Battery Co. and Furukawa Electric Group | Date: 2012-08-30

An object of the present invention is to provide a cathode active material which contains small-particle sized and low-crystalline lithium transition metal silicate and which undergoes charge-discharge reaction at room temperature. The cathode active material for a non-aqueous electrolyte secondary battery is characterized by containing a lithium transition metal silicate and exhibits diffraction peaks having half widths of 0.175 to 0.6, the peaks observed through powder X-ray diffractometry within a 2 range of 5 to 50.


The purpose of the invention is to obtain a negative electrode for a large-capacity nonaqueous electrolyte rechargeable battery having good cycle characteristics. In the present invention, a negative electrode for a nonaqueous electrolyte rechargeable battery is used as a solution, said negative electrode being characterized by having an active material layer on a current collector, said active material layer containing at least granules, and one or more types of coating binder comprising any of a polyimide, polybenzimidazole, polyamide-imide and polyamide. The negative electrode is further characterized in that the granules contain at least active material particles containing: at least one type of element selected from a group comprising Si, Sn, Al, Pb, Sb, Bi, Ge, In and Zn; and a granulation binder.


The purpose of the invention is to obtain a negative electrode for a large-capacity nonaqueous electrolyte rechargeable battery having good cycle characteristics. In the present invention, a negative electrode for a nonaqueous electrolyte rechargeable battery is used as a solution, said negative electrode being characterized by having an active material layer on a current collector, said active material layer containing at least granules, and one or more types of coating binder comprising any of a polyimide, polybenzimidazole, polyamide-imide and polyamide. The negative electrode is further characterized in that the granules contain at least active material particles containing: at least one type of element selected from a group comprising Si, Sn, Al, Pb, Sb, Bi, Ge, In and Zn; and a granulation binder.


[Problem] To provide a hybrid negative plate for a lead-acid storage battery, that inhibits decrease in hydrogen gas evolution potential and improves rapid discharge cycle characteristics in PSOC. [Means for Resolution] In a hybrid negative plate for a lead-acid storage battery, comprising a negative electrode active material-filled plate having formed on the surface thereof a coating layer of a carbon mixture comprising a carbon material for ensuring conductivity, activated carbon for ensuring capacitor capacity and/or pseudocapacitor capacity, and at least a binder, activated carbon modified with a functional group is used as the activated carbon. Preferably, activated carbon modified with an acidic surface functional group is used.


Patent
Csiro and The Furukawa Battery Co. | Date: 2014-02-12

An energy storage device comprising at least one negative electrode, wherein each negative electrode is individually selected from (i) an electrode comprising negative battery electrode material; (ii) an electrode comprising capacitor electrode material; (iii) a mixed electrode comprising either- a mixture of battery and capacitor electrode material or- a region of battery electrode material and a region of capacitor electrode material, or- a combination thereof,and wherein the energy storage device either comprises at least one electrode of type (iii), or comprises at least one electrode of each of types (i) and (ii),- at least one positive electrode,wherein the positive electrode comprises positive battery electrode material and a charging ability-increasing additive, such as one or a mixture of: (a) carbon nanomaterial, vapour grown carbon fibre, fullerene, or a mixture thereof, and (b) tin dioxide conductive materials.


Patent
The Furukawa Battery Co. and Csiro | Date: 2012-02-29

To provide a method for producing a lead-acid battery negative plate for use in a storage battery which provides improved deteriorated rapid discharge characteristics by preventing an interfacial separation between a negative active material-filled plate and a carbon mixture-coated layer, which is a problem in a negative plate having such a configuration that the carbon mixture-coated layer is formed on the surface of the negative active material-filled plate. A coating layer of a carbon mixture is formed at least in a part of a surface of a negative active material-filled plate. The carbon mixture is prepared by mixing two kinds of carbon materials consisting of a first carbon material having conductive properties and a second carbon material having capacitive capacitance and/or pseudo capacitive capacitance and a binding agent. Subsequently, a sufficient amount of lead ions are generated enough to be moved from the negative active material-filled plate into the carbon mixture-coated layer. Thereafter, a formation treatment or an initial charge treatment is performed to precipitate lead so that the carbon mixture-coated layer and the negative plate are connected and integrated, at least in a part of a respective interfacial surface thereof, by the precipitated lead.


There is provided a method for producing a hybrid negative plate for a lead-acid storage battery which is improved in the production working efficiency and the productivity and enhances the quick charge and discharge characteristics and the discharge characteristics at a low temperature under PSOC of a lead-acid storage battery. A carbon mixture sheet produced by such a way that a carbon mixture prepared by mixing two types of carbon materials consisting of a first carbon material having electroconductivity and a second carbon material having capacitor capacitance and/or pseudocapacitor capacitance, and at least a binder, is adhered by pressure to the surface of a negative plate in a wet state, so that a hybrid negative plate is produced. The lead-acid storage battery provided with the hybrid negative plate is improved in the discharge characteristics.

Loading The Furukawa Battery Co. collaborators
Loading The Furukawa Battery Co. collaborators