Fundacion TEKNIKER

Eibar, Spain

Fundacion TEKNIKER

Eibar, Spain
SEARCH FILTERS
Time filter
Source Type

Patent
Fundacion Tekniker | Date: 2017-07-12

Drive device (1) for a first cable (5) which comprises fixing means (13) adapted for fixing the device (1) to the first cable (5) and pulling said first cable (5) along a route. The device (1) also comprises: a first element (11) inseparable from the fixing means (13); and a second element (12), connected to the first element by way of connection means (14) which allow relative movements between the first element (11) and the second element (12), said second element (12) being adapted for advancing along the route upon receiving a force in a first direction by way of a transmission system (2), said first element (11) remaining at rest. The first element (11) is adapted for advancing along said route upon receiving a force in a second direction by way of said transmission system (2), in turn causing said first cable (5) to advance, said second element (12) remaining at rest. The first cable (5) is thus provided with the capacity to be driven or be moved autonomously through tubes, locations which are difficult to access, etc.


Patent
Fundacion Tekniker and Palomino Munoz | Date: 2017-08-09

A device (50) to aid the insertion of an intraocular lens (10) in an intraocular cavity without a capsular bag or sufficient capsular remnants to support an IOL, wherein said intraocular lens (10) comprises two haptics (12). The device (50) comprises: a piece (53) manufactured from a biocompatible material, wherein the piece (53) is configured to receive a haptic (12) of the lens (10); and a thread (54) made of a biocompatible material attached at one end (52) of said piece (53), said thread (54) being configured to, in use of the device, pull and position the optical part (11) of the lens (10) inside the intraocular cavity. An ensemble made up of two devices like the one indicated above and a lens with two haptics. Each haptic is anchored to a support device. Use of the aforementioned device or ensemble in a surgical procedure. A procedure for positioning an intraocular lens (10) comprising two haptics (12) in an intraocular cavity of a patient lacking a capsular bag or capsular remnants to support the IOL, using two support devices (50).


Patent
University of Cantabria, Fundacion Tekniker and Cellbiocan S.L. | Date: 2017-01-25

A biosensor for detecting the concentration or quantity of at least one biomarker present in a sample of a fluid. It comprises: a chip (410, 510) comprising: a substrate (411, 518) whereon a layer of metal has been deposited with at least one nanostructure (414, 514) designed to produce LSPR when it is subjected to an optical radiation of a certain spectral range; and a resonant cavity delimited by two surfaces that act as a mirror, where one of the two surfaces is the layer of metal with nanostructure (414, 514). The layer of metal with at least one nanostructure (414, 514) is biofunctionalized with at least one biomolecule, which recognizes said at least one biomarker. On exposing the chip (410, 510) to optical radiation when the sample is in contact with the chip, it measures the concentration or quantity of said biomarker present in the sample, by comparison of the spectral response of the light at the exit of the chip (410, 510) with a previously determined spectral pattern. The spectral response responds to the combined effect of LSPR in the plasmon nanostructure (414, 514) and of the resonant cavity resonance.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: NMBP-17-2016 | Award Amount: 5.82M | Year: 2017

The benefits of high efficiency concentrated solar power (CSP) and photovoltaic (PV) are well known: environmental protection, economic growth, job creation, energy security. Those technologies can only be applied properly in regions with annual mean radiation values higher than 1750 kWh/m2 per year. CSP has advantages in front of PV: possible 24h continuous electricity production, electricity and heat generation, heat for distributed in cogeneration plants. Within CSP, four technologies have been currently developed: parabolic trough collector (PTC), tower solar power, Stirling/ dish collector and linear Fresnel collector with its advance type named compact linear Fresnel collector. In 2015, there is global 4GWe production (96% PTC), almost 3GWe are under construction. However for huge deployment, a reduction of Levelized Cost of Electricty (LCOE) is imperative for industry consolidation, when nowadays is around 0.16 0.22 /KWh depending on the size plant, Direct Normal Irradiance and the legal framework of site installation. CSP main components: solar field for solar to thermal conversion, power block for thermal to electrical conversion, and thermal storage system are the key to reduce LCOE. IN-POWER project will develop High efficiency solar harvesting CSP architectures based on holistic materials and innovative manufacturing process to allow a Innovation effort mainly focus in advanced materials such as High Reflectance Tailored Shape light Free glass mirror, High working temperature absorber in Vacuum Free receiver, optimized Reduced Mass support structure allow upgrading current solar field. IN-POWER reduce environmental impact also by reducing THREE times standard thermal storage systems by novel thermal storage materials; and a amazing reduction FOUR TIMES the required land extension in comparison of current mature PTC power generation with the same thermal power output. IN-POWER solution will bring LCOE below 0.10 /KWh beyond 2020.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-33-2016 | Award Amount: 2.86M | Year: 2017

Despite process heat is recognized as the application with highest potential among solar heating and cooling applications, Solar Heat for Industrial Processes (SHIP) still presents a modest share of about 0.3% of total installed solar thermal capacity. As of todays technology development stage economic competitiveness restricted to low temperature applications; technology implementation requiring interference with existing heat production systems, heat distribution networks or even heat consuming processes - Solar thermal potential is mainly identified for new industrial capacity in outside Americas and Europe. In this context, INSHIP aims at the definition of a ECRIA engaging major European research institutes with recognized activities on SHIP, into an integrated structure that could successfully achieve the coordination objectives of: more effective and intense cooperation between EU research institutions; alignment of different SHIP related national research and funding programs, avoiding overlaps and duplications and identifying gaps; acceleration of knowledge transfer to the European industry, to be the reference organization to promote and coordinate the international cooperation in SHIP research from and to Europe, while developing coordinated R&D TRLs 2-5 activities with the ambition of progressing SHIP beyond the state-of-the-art through: an easier integration of low and medium temperature technologies suiting the operation, durability and reliability requirements of industrial end users; expanding the range of SHIP applications to the EI sector through the development of suitable process embedded solar concentrating technologies, overcoming the present barrier of applications only in the low and medium temperature ranges; increasing the synergies within industrial parks, through centralized heat distribution networks and exploiting the potential synergies of these networks with district heating and with the electricity grid.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: NMP-19-2015 | Award Amount: 7.99M | Year: 2016

In the wind power generation, aerospace and other industry sectors there is an emerging need to operate in the low temperature and highly erosive environments of extreme weather conditions. Such conditions mean current materials either have a very short operational lifetime or demand such significant maintenance as to render many applications either very expensive to operate or in some cases non-viable. EIROS will develop self-renewing, erosion resistant and anti-icing materials for composite aerofoils and composite structures that can be adapted by different industrial applications: wind turbine blades and aerospace wing leading edges, cryogenic tanks and automotive facia. The addition of novel multi-functional additives to the bulk resin of fibre reinforced composites will allow the achievement of these advanced functionalities. Multi-scale numerical modelling methods will be adopted to enable a materials by design approach to the development of materials with novel structural hierarchies. These are capable of operating in severe operating environments. The technologies developed in this project will provide the partners with a significant competitive advantage. The modification of thermosets resins for use in fibre composite resins represents both a chemically appropriate and highly flexible route to the development of related materials with different applications. It also builds onto existing supply chains which are represented within the partnership and provides for European materials and technological leadership and which can assess and demonstrate scalability. The partnership provides for an industry led project with four specific end users providing both market pull and commercial drive to further progress the materials technology beyond the lifetime of the project.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: IoT-01-2016 | Award Amount: 34.71M | Year: 2017

The IoF2020 project is dedicated to accelerate adoption of IoT for securing sufficient, safe and healthy food and to strengthen competitiveness of farming and food chains in Europe. It will consolidate Europes leading position in the global IoT industry by fostering a symbiotic ecosystem of farmers, food industry, technology providers and research institutes. The IoF2020 consortium of 73 partners, led by Wageningen UR and other core partners of previous key projects such as FIWARE and IoT-A, will leverage the ecosystem and architecture that was established in those projects. The heart of the project is formed by 19 use cases grouped in 5 trials with end users from the Arable, Dairy, Fruits, Vegetables and Meat verticals and IoT integrators that will demonstrate the business case of innovative IoT solutions for a large number of application areas. A lean multi-actor approach focusing on user acceptability, stakeholder engagement and sustainable business models will boost technology and market readiness levels and bring end user adoption to the next stage. This development will be enhanced by an open IoT architecture and infrastructure of reusable components based on existing standards and a security and privacy framework. Anticipating vast technological developments and emerging challenges for farming and food, the 4-year project stays agile through dynamic budgeting and adaptive decision-making by an implementation board of representatives from key user organizations. A 6 M mid-term open call will allow for testing intermediate results and extending the project with technical solutions and test sites. A coherent dissemination strategy for use case products and project learnings supported by leading user organizations will ensure a high market visibility and an increased learning curve. Thus IoF2020 will pave the way for data-driven farming, autonomous operations, virtual food chains and personalized nutrition for European citizens.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: PILOTS-02-2016 | Award Amount: 5.68M | Year: 2017

FLEXPOL aims to develop a pilot line for the production of a cost effective antimicrobial (AM) adhesive film for its use in hospitals. The obtained adhesive film will inhibit growth of a wide range of microbes and will be suitable for high-touch surfaces, providing a durable protection with good resistance. It will assure the highest level of hygiene and patient safety, reducing the use of disinfectants. These objectives will be achieved, using a multi-functional approach combining prevention of adhesion with killing of microorganisms, by means of essential oil (EO) emulsions embedded in a micro and nanopatterned polypropylene matrix. FLEXPOL covers the following key aspects: -It addresses the development, upscaling and demonstration in a relevant industrial environment of the production of films with AM, biocompatible and anti-adhesive properties. Existing extrusion and nanoimprinting pilot lines will act as the starting point in which new additives based on blends of EO will be incorporated. -Previously validated technologies constitute the basis of the approach. These technologies will be extended to large scale production and demonstrated in a real operational environment. The pilot line will include real time characterization for inspection of the film at the nanoscale. -Robustness and repeatability of film fabrication and its behavior in a real environment will be studied. The effectiveness of the solution will be compared with standard protocols. -Materials are chosen according to their cost for large-scale application. Productivity and cost of the fabrication process will be analyzed attending to energetic optimization of the product fabrication and the raw material cost. -Access to the pilot line for AM films in this or a different application will be ensured to European Industries at a cost that promotes technology transfer. -Non-technological aspects key for the marketing of the product (such as regulatory issues, HSE aspects, LCA...) are considered.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-02-2015 | Award Amount: 5.94M | Year: 2016

Concentrating Solar Power is one of the most promising and sustainable renewable energy and is positioned to play a massive role in the future global generation mix, alongside wind, hydro and solar photovoltaic technologies. Although there is definitely perspective for the technology for rapid grow, success of CSP will ultimately rely on the ability to overcome obstacles that prevent its mass adoption, especially the large financial demand and limited accessibility of water. Water saving is therefore one of the major issues to ensure a financially competitive position of CSP plants and their sustainable implementation. To overcome such challenges, WASCOP brings together leading EU and Moroccan Institutions, Universities, and commercial SMEs and industry. They join their forces to develop a revolutionary innovation in water management of CSP plants - flexible integrated solution comprising different innovative technologies and optimized strategies for the cooling of the power-block and the cleaning of the solar field optical surfaces. WASCOP main advantage consists in the ability to reflect and adapt to the specific conditions prevailing at individual CSP plants, unlike other competitive approaches proposing a single generic solution applicable only on some referenced cases. The WASCOP holistic solution provides an effective combination of technologies allowing a significant reduction in water consumption (up to 70% - 90%) and a significant improvement in the water management of CSP plants. To demonstrate the benefits (whether economic or environmental), the developed system will be tested and validated in real conditions of four testing sites in France, Spain and Morocco after preliminary demonstration in laboratory environment.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: LCE-07-2016-2017 | Award Amount: 5.08M | Year: 2016

MOSAIC project aims to exceed the goal of the Strategic Energy Technology (SET) Plan - European Commission of producing CSP electricity at a cost below 0.10 /kWh. To exceed this goal a commercial CSP plant of > 1GW of nominal capacity is foreseen, in which high nominal capacity of CSP plant is reached in a modular way where each MOSAIC module delivers thermal energy to linked thermal energy storage systems that supply their energy to a high capacity power block (>1GW). This modular configuration guarantees reliability, flexibility and dispatchability according to the needs of the electrical grid while reduces significantly the specific cost of the Power block (/MW installed). Each MOSAIC module consists of an innovative fixed spherical mirror concentrator arranged in a semi-Fresnel manner and an actuated receiver based on a low cost closed loop cable tracking system. This configuration reduces the moving parts of the whole system decreasing solar field cost while keeping high concentration ratios. This will assure high working temperatures thus high cycle efficiencies and a cost effective use of thermal storage systems. Energy from the sun is collected, concentrated and transferred to the heat transfer fluid at module level where, due to the modular concept, distances from the solar concentrator to the receiver are much shorter that those typical from solar tower technologies. As a result, the efficiency of energy collection is maximized, atmospherical attenuation is minimized and accuracy requirements can be relaxed. All these technical benefits contribute to a much lower capital cost of the whole system while keeping efficiency and reliability. This has consequently a strong impact in the final cost of electricity production. First figures show LCOE estimated values below 0.10/kWh for CSP power plants of 100 MW nominal power based in MOSAIC concept, additional cost reductions are expected for greater capacities (>1GW) exceeding the goal of the SET plan

Loading Fundacion TEKNIKER collaborators
Loading Fundacion TEKNIKER collaborators