Entity

Time filter

Source Type

Barcelona, Spain

Ulate-Campos A.,Hospital Universitario Sant Joan Of Deu | Fons C.,Hospital Universitario Sant Joan Of Deu | Fons C.,Institute Salud Carlos III | Campistol J.,Hospital Universitario Sant Joan Of Deu | And 9 more authors.
Medicina Clinica | Year: 2014

Background and objective Alternating hemiplegia in childhood (AHC) is a disease characterized by recurrent episodes of hemiplegia, tonic or dystonic crisis and abnormal ocular movements. Recently, mutations in the ATP1A3 gene have been identified as the causal mechanism of AHC. The objective is to describe a series of 16 patients with clinical and genetic diagnosis of AHC. Patients and method It is a descriptive, retrospective, multicenter study of 16 patients with clinical diagnosis of AHC in whom mutations in ATP1A3 were identified. Results Six heterozygous, de novo mutations were found in the ATP1A3 gene. The most frequent mutation was G2401A in 8 patients (50%) followed by G2443A in 3 patients (18.75%), G2893A in 2 patients (12.50%) and C2781G, G2893C and C2411T in one patient, respectively (6.25% each). Conclusions In the studied population with AHC, de novo mutations were detected in 100% of patients. The most frequent mutations were D801N y la E815K, as reported in other series. © 2013 Elsevier Espana, S.L. All rights reserved. Source


Ivorra J.L.,CIBERSAM | Ivorra J.L.,University of Leeds | Rivero O.,CIBERSAM | Rivero O.,University of Wurzburg | And 46 more authors.
Schizophrenia Research | Year: 2014

Genome wide association studies (GWAS) has allowed the discovery of some interesting risk variants for schizophrenia (SCZ). However, this high-throughput approach presents some limitations, being the most important the necessity of highly restrictive statistical corrections as well as the loss of statistical power inherent to the use of a Single Nucleotide Polymorphism (SNP) analysis approach. These problems can be partially solved through the use of a polygenic approach. We performed a genotyping study in SCZ using 86 previously associated SNPs identified by GWAS of SCZ, bipolar disorder (BPD) and autistic spectrum disorder (ASD) patients. The sample consisted of 3063 independent cases with DSM-IV-TR diagnosis of SCZ and 2847 independent controls of European origin from Spain. A polygenic score analysis was also used to test the overall effect on the SCZ status. One SNP, rs12290811, located in the ODZ4 gene reached statistical significance (p=1.7×10-4, Allelic odds ratio=1.21), a value very near to those reported in previous GWAS of BPD patients. In addition, 4 SNPs were close to the significant threshold: rs3850333, in the NRXN1 gene rs6932590, at MHC; rs2314398, located in an intergenic region on chromosome 2; and rs1006737, in the CACNA1C gene. We also found that 74% of the studied SNPs showed the same tendency (risk or protection alleles) previously reported in the original GWAS (p<0.001). Our data strengthen the polygenic component of susceptibility to SCZ. Our findings show ODZ4 as a risk gene for SCZ, emphasizing the existence of common vulnerability in psychosis. © 2014. Source


Paco S.,Fundacion Sant Joan de Deu | Ferrer I.,CIBER ISCIII | Jou C.,Hospital Materno Infantil Sant Joan de Deu | Cusi V.,Hospital Materno Infantil Sant Joan de Deu | And 11 more authors.
Journal of Neuropathology and Experimental Neurology | Year: 2012

Ullrich congenital muscular dystrophy (UCMD) is a common form of muscular dystrophy associated with defects in collagen VI. It is characterized by loss of individual muscle fibers and muscle mass and proliferation of connective and adipose tissues. We sought to investigate the mechanisms by which collagen VI regulates muscle cell survival, size, and regeneration and, in particular, the potential role of the ubiquitin-proteasome and calpain-proteolytic systems. We studied muscle biopsies of UCMD (n = 6), other myopathy (n = 12), and control patients (n = 10) and found reduced expression of atrogin-1, MURF1, and calpain-3 mRNAs in UCMD cases. Downregulation of calpain-3 was associated with changes in the nuclear immunolocalization of nuclear factor-κB. We also observed increased expression versus controls of regeneration markers at the protein and RNA levels. Satellite cell numbers did not differ in collagen VI-deficient muscle versus normal nonregenerating muscle, indicating that collagen VI does not play a key role in the maintenance of the satellite cell pool. Our results indicate that alterations in calpain-3 and nuclear factor-κB signaling pathways may contribute to muscle mass loss in UCMD muscle, whereas atrogin-1 and MURF1 are not likely to play a major role. Copyright © 2012 by the American Association of Neuropathologists, Inc. Source


Paco S.,Fundacion Sant Joan de Deu | Casserras T.,Bioinformatics Core Facility | Rodriguez M.A.,Fundacion Sant Joan de Deu | Jou C.,Hospital Sant Joan de Deu | And 10 more authors.
PLoS ONE | Year: 2015

Background Collagen VI related myopathies encompass a range of phenotypes with involvement of skeletal muscle, skin and other connective tissues. They represent a severe and relatively common form of congenital disease for which there is no treatment. Collagen VI in skeletal muscle and skin is produced by fibroblasts. Aims & Methods In order to gain insight into the consequences of collagen VI mutations and identify key disease pathways we performed global gene expression analysis of dermal fibroblasts from patients with Ullrich Congenital Muscular Dystrophy with and without Vitamin C treatment. The expression data were integrated using a range of systems biology tools. Results were validated by real-time PCR, western blotting and functional assays. Findings We found significant changes in the expression levels of almost 600 genes between collagen VI deficient and control fibroblasts. Highly regulated genes included extracellular matrix components and surface receptors, including integrins, indicating a shift in the interaction between the cell and its environment. This was accompanied by a significant increase in fibroblasts adhesion to laminin. The observed changes in gene expression profiling may beunder the control of two miRNAs, miR-30c and miR-181a, which we found elevated in tissue and serum from patients and which could represent novel biomarkers for muscular dystrophy. Finally, the response to Vitamin C of collagen VI mutated fibroblasts significantly differed from healthy fibroblasts. Vitamin C treatment was able to revert the expression of some key genes to levels found in control cells raising the possibility of a beneficial effect of Vitamin C as a modulator of some of the pathological aspects of collagen VI related diseases. © 2015 Paco et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Discover hidden collaborations