Entity

Time filter

Source Type


Pinilla Y.T.,El Rosario University | Patarroyo M.A.,El Rosario University | Patarroyo M.A.,Fundacion Institute Inmunologia Of Colombia | Bello F.J.,El Rosario University
Forensic Science International | Year: 2013

Sarconesiopsis magellanica is a forensically relevant necrophagous blowfly that can aid in determining the post-mortem interval (PMI) as it is the first to colonise decomposing corpses. The blowfly has been reported in several South-American countries including Colombia, in high-altitude regions ranging from 1200 to 3100m above sea level. The present study reports this blowfly's life cycle and an analysis of its reproductive and population parameters under laboratory conditions for the first time. Six successive generations of flies were produced with an average of 65.38% adults emerging with respect to the total number of puparia. The shortest life cycle from egg to adult emergence was found in individuals fed on a lyophilised liver (LL) diet, while the longest one was found in individuals fed with an egg-powdered milk (E-PM) diet; intermediate values were found when the pig liver (PL) diet was tested. The greatest adult longevity was achieved when the PL diet was used, the LL diet giving the shortest. The population parameters based on the horizontal life table were: net reproductive rate (Ro)=447.752±9.9, mean generational time (Tc)=18.18±0.38, natural population increase rate (rm)=0.145 and finite population increase rate (λ)=1.398. This blowfly colony represents a valuable asset for both basic and applied studies. Members of the S. magellanica colony so established were used for analysing the life-cycle, reproductive and population parameters, and further medical and forensic application studies are currently underway. © 2013 Elsevier Ireland Ltd. Source


Bohorquez H.J.,Fundacion Institute Inmunologia Of Colombia | Reyes A.,National University of Colombia
Molecular Physics | Year: 2014

We investigate the Pauli energy in atoms and molecules as a measure of electron localisation. Our results indicate that the Pauli energy has an exponential dependence on the number of localised electrons. This relationship yields to a kinetic energy density expression that depends on the electron density ρ(r) and the pair density ρ2(r, r′). The proposed equation shows certain advantages over a similar orbital-free kinetic energy functional recently proposed by Delle Site and co-workers. The methodology introduced here is a novel approach for exploring electronic quantities with a partition scheme that might be useful for research in density functional theory. © 2013 Taylor & Francis. Source


Diaz-Roa A.,El Rosario University | Gaona M.A.,El Rosario University | Segura N.A.,El Rosario University | Ramirez-Hernandez A.,National University of Colombia | And 5 more authors.
Acta Tropica | Year: 2016

Larval therapy is used as alternative treatment for hard-to-heal chronic and infected wounds. Lucilia sericata is the most used blowfly species. However, it has been shown recently that Sarconesiopsis magellanica larval excretions and secretions have potent antibacterial activity; this blowfly belongs to the Calliphoridae family.The present work has dealt with evaluating larval therapy using S. magellanica on wounds induced in diabetic rabbits and its action was compared to the effect induced by L. sericata. Twelve New Zealand White rabbits (. Oryctolagus cuniculus) were used; they were divided into 4 groups, the first two being treated with larval therapy derived from both aforementioned necrophagous blowflies, an antibiotic was used in the third and the fourth was used as control. All the animals were wounded on the back and infected with Pseudomonas aeruginosa and Staphylococcus aureus.Samples of the secretion from each animal's infected wound were taken and sown on blood agar. The colony forming units were then counted. The PUSH scale was used for the macroscopic evaluation of the wounds.Bacterial control was encountered 48. h post-treatment in the treatments involving larval therapy and to a lesser extent with the antibiotic. Likewise, wound debridement was quicker and more efficient with larval therapy compared to the antibiotic group; however, wound closing time was 23 days in all treatments. The group treated with S. magellanica larvae had relatively quicker evolution until the proliferation phase and the start of maturation, even though there were no significant differences between both blowfly species evaluated here regarding treatments by the end of the treatment period.The present study has validated the diabetic rabbit model for inducing chronic wounds regarding larval therapy and has likewise confirmed the effectiveness of S. magellanica-derived larval therapy as an alternative for curing and healing wounds. © 2015 Elsevier B.V. Source


Curtidor H.,Fundacion Institute Inmunologia Of Colombia | Curtidor H.,El Rosario University | Vanegas M.,Fundacion Institute Inmunologia Of Colombia | Vanegas M.,El Rosario University | And 4 more authors.
Current Medicinal Chemistry | Year: 2011

Our ongoing search for a fully-effective vaccine against the Plasmodium falciparum parasite (causing the most lethal form ofhuman malaria) has been focused on identifying and characterising proteins' amino acid sequences (high activity binding peptides orHABPs) involved in parasite invasion of red blood cells (RBC) by the merozoite and hepatocytes by the sporozoite. Many such merozoiteHABPs have been recognised and molecularly and structurally characterised; however, native HABPs are immunologically silentsince they do not induce any immune response or protection against P. falciparum malaria infection and they have to be structurallymodified to allow them to fit perfectly into immune system molecules.A deeply structural analysis of these conserved merozoite HABPs and their modified analogues has led to rules or principles becomingrecognised for constructing a logical and rational methodology for a minimal subunit-based, multi-epitope, multi-stage, chemicallysynthesisedvaccine. The same in-depth analysis of the most relevant sporozoite proteins involved in sporozoite cell-traversal and hepatocyteinvasion as well as the hepatic stage is shown here.Specifically modifying these HABPs has resulted in a new set of potential pre-erythrocyte targets which are able to induce high, longlastingantibody titres in Aotus monkeys, against their corresponding recombinant proteins and the complete parasite native molecules.This review shows how these rules may be applied against the first stage of parasite invasion (i.e. the sporozoite) to mount the first line ofdefence against the malarial parasite, which may indeed be the most effective one. Our results strongly support including some of thesemodified sporozoite HABPs in combination with the previously-described modified merozoite HABPs for obtaining the aforementionedfully-protective, multiepitope, multi-stage, minimal subunit-based, chemically-synthesized, antimalarial vaccine. © 2011 Bentham Science Publishers. Source


Patarroyo M.A.,Fundacion Institute Inmunologia Of Colombia | Patarroyo M.A.,El Rosario University | Bermudez A.,Fundacion Institute Inmunologia Of Colombia | Bermudez A.,El Rosario University | And 5 more authors.
PLoS ONE | Year: 2010

T-cell receptor gene rearrangements were studied in Aotus monkeys developing high antibody titers and sterilizing immunity against the Plasmodium falciparum malaria parasite upon vaccination with the modified synthetic peptide 24112, which was identified in the Merozoite Surface Protein 2 (MSP-2) and is known to bind to HLA-DRβ1*0403 molecules with high capacity. Spectratyping analysis showed a preferential usage of Vβ12 and Vβ6 TCR gene families in 67% of HLADRβ1* 0403-like genotyped monkeys. Docking of peptide 24112 into the HLA-DRβ1*0401-HA peptide-HA1.7TCR complex containing the VDJ rearrangements identified in fully protected monkeys showed a different structural signature compared to nonprotected monkeys. These striking results show the exquisite specificity of the TCR/pMHCII complex formation needed for inducing sterilizing immunity and provide important hints for a logical and rational methodology to develop multiepitopic, minimal subunit-based synthetic vaccines against infectious diseases, among them malaria. © 2010 Patarroyo et al. Source

Discover hidden collaborations