Time filter

Source Type

Aguilar E.,Center for Genomic and Oncological Research | Bago J.R.,University of North Carolina at Chapel Hill | Soler-Botija C.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | Alieva M.,University Utrecht | And 8 more authors.
Stem Cells and Development | Year: 2014

Human mesenchymal stromal cells, whether from the bone marrow or adipose tissue (hASCs), are promising cell therapy agents. However, generation of abundant cells for therapy remains to be a challenge, due to the need of lengthy expansion and the risk of accumulating genomic defects during the process. We show that hASCs can be easily induced to a reversible fast-proliferating phenotype (FP-ASCs) that allows rapid generation of a clinically useful quantity of cells in <2 weeks of culture. Expanded FP-ASCs retain their finite expansion capacity and pluripotent properties. Despite the high proliferation rate, FP-ASCs show genomic stability by array-comparative genomic hybridization, and did not generate tumors when implanted for a long time in an SCID mouse model. Comparative analysis of gene expression patterns revealed a set of genes that can be used to characterize FP-ASCs and distinguish them from hASCs. As potential candidate therapeutic agents, FP-ASCs displayed high vasculogenic capacity in Matrigel assays. Moreover, application of hASCs and FP-ASCs in a fibrin scaffold over a myocardium infarct model in SCID mice showed that both cell types can differentiate to endothelial and myocardium lineages, although FP-ASCs were more potent angiogenesis inducers than hASCs, at promoting myocardium revascularization. © 2014 Mary Ann Liebert, Inc.

Roura S.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | Galvez-Monton C.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | Bayes-Genis A.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | Bayes-Genis A.,Hospital Universitari Germans Trias i Pujol | Bayes-Genis A.,Autonomous University of Barcelona
Journal of Cellular and Molecular Medicine | Year: 2013

Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light-emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell-based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light-emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright. © 2013 The Authors Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

Roura S.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | Bago J.R.,Cardiovascular Research Center | Bago J.R.,CIBER ISCIII | Soler-Botija C.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | And 9 more authors.
PLoS ONE | Year: 2012

Stem cell therapies are promising strategies to regenerate human injured tissues, including ischemic myocardium. Here, we examined the acquisition of properties associated with vascular growth by human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs), and whether they promoted vascular growth in vivo. UCBMSCs were induced in endothelial cell-specific growth medium (EGM-2) acquiring new cell markers, increased Ac-LDL uptake, and migratory capacity as assessed by qRT-PCR, Western blotting, indirect immunofluorescence, and invasion assays. Angiogenic and vasculogenic potentials could be anticipated by in vitro experiments showing self organization into Matrigel-mediated cell networks, and activation of circulating angiogenic-supportive myeloid cells. In mice, following subcutaneous co-injection with Matrigel, UCBMSCs modified to co-express bioluminescent (luciferases) and fluorescent proteins were demonstrated to participate in the formation of new microvasculature connected with the host circulatory system. Response of UCBMSCs to ischemia was explored in a mouse model of acute myocardial infarction (MI). UCBMSCs transplanted using a fibrin patch survived 4 weeks post-implantation and organized into CD31+network structures above the infarcted myocardium. MI-treated animals showed a reduced infarct scar and a larger vessel-occupied area in comparison with MI-control animals. Taken together, the presented results show that UCBMSCs can be induced in vitro to acquire angiogenic and vasculogenic properties and contribute to vascular growth in vivo. © 2012 Roura et al.

Cal R.,Cardiovascular Research Center | Juan-Babot O.,Cardiovascular Research Center | Brossa V.,Autonomous University of Barcelona | Roura S.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | And 7 more authors.
Journal of Translational Medicine | Year: 2012

Our hypothesis was that overexpression of certain lipoprotein receptors might be related to lipid accumulation in the human ischemic myocardium. Intramyocardial lipid overload contributes to contractile dysfunction and arrhythmias in cardiomyopathy. Thus, the purpose of this study was to assess the effect of hypercholesterolemic LDL and hypertrigliceridemic VLDL dose on LRP1 expression in cardiomyocytes, as well as the potential correlation between LRP1 expression and neutral lipid accumulation in the left ventricle tissue from ischemic cardiomyopathy patients. Cell culture experiments include control and LRP1-deficient cardiomyocytes exposed to lipoproteins under normoxic and hypoxic conditions. Explanted hearts from 18 ICM patients and eight non-diseased hearts (CNT) were included. Low density lipoprotein receptor-related protein 1 (LRP1), very low density lipoprotein receptor (VLDLR) and low density lipoprotein receptor (LDLR) expression was analyzed by real time PCR and Western blotting. Cholesteryl ester (CE), triglyceride (TG) and free cholesterol (FC) content was assess by thin layer chromatography following lipid extraction. Western blotting experiments showed that protein levels of LRP1, VLDLR and HIF-1α were significantly upregulated in ischemic hearts. Immunohistochemistry and confocal microscopy analysis showed that LRP1 and HIF-1α were upregulated in cardiomyocytes of ICM patients. In vitro studies showed that VLDL, LDL and hypoxia exerted an upregulatory effect on LRP1 expression and that LRP1 played a major role in cholesteryl ester accumulation from lipoproteins in cardiomyocytes. Myocardial CE accumulation strongly correlated with LRP1 levels in ischemic hearts. Taken together, our results suggest that LRP1 upregulation is key for myocardial cholesterol ester accumulation in ischemic human hearts and that LRP1 may be a target to prevent the deleterious effects of myocardial cholesterol accumulation in ischemic cardiomyopathy. © 2012 Cal et al.; licensee BioMed Central Ltd.

Sanjurjo L.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | Amezaga N.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | Vilaplana C.,Fundacio Institute Dinvestigacio En Ciencies Of La Salut Germans Trias I Pujol Igtp | Vilaplana C.,Autonomous University of Barcelona | And 13 more authors.
PLoS ONE | Year: 2013

Apoptosis inhibitor of macrophages (AIM), a scavenger protein secreted by tissue macrophages, is transcriptionally regulated by the nuclear receptor Liver X Receptor (LXR) and Retinoid X Receptor (RXR) heterodimer. Given that LXR exerts a protective immune response against M. tuberculosis, here we analyzed whether AIM is involved in this response. In an experimental murine model of tuberculosis, AIM serum levels peaked dramatically early after infection with M. tuberculosis, providing an in vivo biological link to the disease. We therefore studied the participation of AIM in macrophage response to M. tuberculosis in vitro. For this purpose, we used the H37Rv strain to infect THP-1 macrophages transfected to stably express AIM, thereby increasing infected macrophage survival. Furthermore, the expression of this protein enlarged foam cell formation by enhancing intracellular lipid content. Phagocytosis assays with FITC-labeled M. tuberculosis bacilli indicated that this protein was not involved in bacterial uptake; however, AIM expression decreased the number of intracellular cfus by up to 70% in bacterial killing assays, suggesting that AIM enhances macrophage mycobactericidal activity. Accordingly, M. tuberculosis-infected AIM-expressing cells upregulated the production of reactive oxygen species. Moreover, real-time PCR analysis showed increased mRNA levels of the antimicrobial peptides cathelicidin and defensin 4B. These increases were concomitant with greater cellular concentrations of the autophagy-related molecules Beclin 1 and LC3II, as well as enhanced acidification of mycobacterial phagosomes and LC3 co-localization. In summary, our data support the notion that AIM contributes to key macrophage responses to M. tuberculosis. © 2013 Sanjurjo et al.

Discover hidden collaborations