Time filter

Source Type

He H.,Ocean University of China | Zhen Y.,Ocean University of China | Zhen Y.,CAS Qingdao Institute of Oceanology | Mi T.,Ocean University of China | And 4 more authors.
Geomicrobiology Journal | Year: 2016

Community composition and abundance of ammonia-oxidizing archaea (AOA) were investigated using ammonia monooxygenase α subunit (amoA) in sediments from the Changjiang estuary and its adjacent area in the East China Sea (ECS). Real-time quantitative polymerase chain reaction (qPCR), clone libraries and sequencing were performed to characterize the AOA community. Clone libraries analysis showed that the majority of amoA sequences fell within the Nitrosopumilus cluster. Correlation analysis showed that AOA diversity was closely related to the nitrite concentration, which was consistent with the canonical correspondence analysis (CCA) where a significant association between nitrite and AOA community composition was observed. The qPCR results were found to be significantly correlated with the environmental parameters. In the gravity cores, a significant positive correlation was found between ammonium concentrations and amoA gene copy numbers from different sediment depths at station S31. At station S33, however, ammonium concentration had a negative correlation and nitrite concentration had a positive correlation with amoA gene copy numbers. In the surface sediments, chlorophyll a concentration had a negative correlation and nitrate concentration had a positive correlation with amoA gene copy numbers. Compared amoA gene copy numbers from AOA with those from ammonia-oxidizing β-proteobacteria (β-AOB) in the same studied areas, the amoA gene copy ratio of β-AOB to AOA was negatively correlated with the phosphate concentration and dissolved oxygen concentration, but was not significantly correlated with either ammonium concentrations or salinity. Our data provided valuable information to achieve a better understanding of the potential role of ammonia oxidizers at the interface between terrestrial and marine environments. © 2016 Taylor & Francis Group, LLC

Loading Function Laboratory for Marine and Environmental Science collaborators
Loading Function Laboratory for Marine and Environmental Science collaborators