Fujian Institute of Subtropical Botany

Xiamen, China

Fujian Institute of Subtropical Botany

Xiamen, China

Time filter

Source Type

PubMed | Jilin University, Jilin Entry Exit Inspection and Quarantine Bureau, Fujian Institute of Subtropical Botany, Jilin Provincial Center for Animal Disease Control and Prevention and Liaoning Medical University
Type: Journal Article | Journal: Veterinary immunology and immunopathology | Year: 2015

Peroxiredoxin 6 (Prdx6), an important antioxidant enzyme that can eliminate reactive oxygen species (ROS) to maintain homeostasis, is a bifunctional protein that possesses the activities of both glutathione peroxidase and phospholipase A2. In this study, a novel full-length Prdx6 cDNA (OaPrdx6) was cloned from Sheep (Ovis aries) using rapid amplification of cDNA ends (RACE). The full-length cDNA of OaPrdx6 was 1753bp containing a 5-untranslated region (UTR) of 93bp, a 3-UTR of 985bp with a poly(A) tail, and an open reading frame (ORF) of 675bp encoding a protein of 224 amino acid residues with a predicted molecular weight of 25.07kDa. The recombinant protein OaPrdx6 was expressed and purified, and its DNA protection activity was identified. In order to analyze the Prdx6 protein expression in tissues from O. aries, monoclonal antibodies against OaPrdx6 were prepared. Western blotting results indicated that OaPrdx6 protein could be detected in heart, liver, spleen, lung, kidney, stomach, intestine, muscle, lymph node and white blood cells, and the highest expression was found in lung while the lowest expression in muscle. Compared to the normal sheep group, the mRNA transcription level of Prdx6 in buffy coat was up-regulated in the group infected with a virulent field strain of Brucella melitensis, and down-regulated in the group inoculated with a vaccine strain S2 of brucellosis. The results indicated that Prdx6 was likely to be involved in the host immune responses against Brucella infection, and probably regarded as a molecular biomarker for distinguishing between animals infected with virulent Brucella infection and those inoculated with vaccine against brucellosis.


PubMed | Fujian Institute of Subtropical Botany and China Agricultural University
Type: | Journal: Carbohydrate polymers | Year: 2016

The physicochemical properties (molecular weights and monosaccharide compositions), antioxidant and hepatoprotective activities of polysaccharides (ARPPs: ARPP30, ARPP60 and ARPP80) isolated from Anoectochilus roxburghii were investigated. ARPP80 exhibited relatively strong antioxidant activities in a concentration-dependent manner. In mice subjected to carbon tetrachloride-induced hepatotoxicity, ARPP80 pretreatment significantly (p<0.01) reduced the levels of aspartate and alanine amino transferases and malonyldialdehyde, prominently (p<0.01) restored the levels of superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione in serum or liver homogenate. These hepatoprotective effects were comparable to those of the standard drug silymarin at the same dose (200mg/kg). The study clearly demonstrated that ARPPs, especially ARPP80, might be suitable as functional foods or hepatoprotective drugs.


Wang W.-H.,Fujian Institute of Subtropical Botany | He E.-M.,Fujian Institute of Subtropical Botany | Chen J.,Northwest University, China | Chen J.,Xiamen University | And 3 more authors.
Plant Journal | Year: 2016

Summary Besides their participation in photosynthesis, leaf chloroplasts function in plant responses to stimuli, yet how they direct stimulus-induced stomatal movement remains elusive. Here, we showed that over-reduction of the plastoquinone (PQ) pool by dibromothymoquinone (DBMIB) was closely associated with stomatal closure in plants which required chloroplastic H2O2 generation in the mesophyll. External application of H2O2 reduced the PQ pool, whereas the cell-permeable reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) reversed the DBMIB-induced over-reduction of the PQ pool and stomatal closure. Mesophyll chloroplasts are key players of extracellular Ca2+ (Ca2+ o)-induced stomatal closure, but when treated with either 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) or NAC they failed to facilitate Ca2+ o-induced stomatal closure due to the inhibition of chloroplastic H2O2 synthesis in mesophyll. Similarly, the Arabidopsis electron transfer chain-related mutants npq4-1, stn7 and cas-1 exhibited diverse responses to Ca2+ o or DBMIB. Transcriptome analysis also demonstrated that the PQ pool signaling pathway shared common responsive genes with the H2O2 signaling pathway. These results implicated a mechanism for chloroplast-mediated stomatal closure involving the generation of mesophyll chloroplastic H2O2 based on the reduced state of the PQ pool, which is calcium-sensing receptor (CAS) and LHCII phosphorylation dependent. © 2016 John Wiley & Sons Ltd.


PubMed | State Oceanic Administration, Fujian Institute of Subtropical Botany and Xiamen University
Type: Journal Article | Journal: Plant cell reports | Year: 2016

Cadmium sensitivity in sultr1;1 - sultr1;2 double mutant with limiting sulfate supply is attributed to the decreased glutathione content that affected oxidative defense but not phytochelatins synthesis. In plants, glutathione (GSH) homeostasis plays pivotal role in cadmium (Cd) detoxification. GSH is synthesized by sulfur (S) assimilation pathway. Many studies have tried to investigate the role of GSH homeostasis on Cd tolerance using mutants; however, most of them have focused on the last few steps of S assimilation. Until now, mutant evidence that explored the relationship between GSH homeostasis on Cd tolerance and S absorption is rare. To further reveal the role of GSH homeostasis on Cd stress, the wild-type and a sultr1;1-sultr1;2 double mutant which had a defect in two distinct high-affinity sulfate transporters were used in this study. Growth parameters, biochemical or zymological indexes and S assimilation-related genes expression were compared between the mutant and wild-type Arabidopsis plants. It was found that the mutations of SULTR1;1 and SULTR1;2 did not affect Cd accumulation. Compared to the wild-type, the double mutant was more sensitive to Cd under limited sulfate supply and suffered from stronger oxidative damage. More importantly, under the same condition, lower capacity of S assimilation resulted in decreased GSH content in mutant. Faced to the limited GSH accumulation, mutant seedlings consumed a large majority of GSH in pool for the synthesis of phytochelatins rather than participating in the antioxidative defense. Therefore, homeostasis of GSH, imbalance between antioxidative defense and severe oxidative damage led to hypersensitivity of double mutant to Cd under limited sulfate supply.


PubMed | Fujian Institute of Subtropical Botany and Xiamen University
Type: | Journal: Molecular neurodegeneration | Year: 2016

Apolipoprotein E (ApoE) is a major cholesterol carrier and plays an important role in maintaining lipid homeostasis both in the periphery and brain. Human APOE gene is polymorphic at two single nucleotides (rs429358 and rs7412) resulting in three different alleles (2, 3 and 4). ApoE isoforms modulate the risk for a variety of vascular and neurodegenerative diseases; thus, APOE genotyping is crucial for predicting disease risk and designing individualized therapy based on APOE genotype.We have developed an APOE genotyping method that is based on allele-specific PCR methodology adapted to Real Time PCR monitored by TaqMan probe. Rather than using TaqMan probes specific for the two polymorphic sites, only one TaqMan probe is used as the polymorphic alleles are recognized by site-specific PCR primers. Each genotyping assay can be completed within 90 minutes and is applicable to high-throughput analysis. Using this protocol, we genotyped a total of 1158 human DNA samples and obtained a 100% concordance with the APOE genotype determined by sequencing analysis.The APOE genotyping assay we have developed is accurate and cost-effective. In addition, our assay can readily be applied to genotyping large sample numbers. Therefore, our APOE genotyping method can be used for assessing the risk for a variety of vascular and neurodegenerative diseases that have been reported to be associated with APOE polymorphism.


PubMed | Fujian Institute of Subtropical Botany, Guangdong Academy of Agricultural Sciences and Guangxi University
Type: Journal Article | Journal: Genome announcements | Year: 2016

Here, we report the draft genome sequence of Leifsonia xyli subsp. xyli strain gdw1, isolated from the stem of Badila sugarcane located at the Guangdong Key Laboratory for Crops Genetic Improvement (Guanzhou, China), that causes ratoon stunting disease of sugarcane. The de novo genome of Leifsonia xyli subsp. xyli was assembled with 48 scaffolds and a G+C content of 67.68%, and contained 2.6Mb bp and 2,838 coding sequences.


PubMed | Chinese Academy of Forestry, Fujian Institute of Subtropical Botany, Nanjing Agricultural University and CAS Kunming Institute of Botany
Type: Journal Article | Journal: Plant cell reports | Year: 2016

A NAC -like gene named DlNAC1 was identified in chrysanthemum and characterized; it may be involved in regulation of response to abiotic stressors, especially in tolerance to drought and salinity. NAC transcription factors in plants play crucial roles in tolerance to abiotic stressors, and overexpression of the NAC gene in Arabidopsis has been demonstrated to lead to improved drought tolerance. Functions of the NAC genes in chrysanthemum, however, remain poorly understood. In this study, a NAC-like gene named DlNAC1 was identified in chrysanthemum (Dendranthema lavandulifolium) and characterized. Phylogenetic analysis indicated that DlNAC1 contains a typical NAC domain and belongs to the ONAC022 subgroup. According to the subcellular localization and yeast one-hybrid assay, the DlNAC1 protein is localized to nuclei and has a transcription activation ability. Moreover, quantitative real-time PCR analyses showed that DlNAC1 was induced by low-temperature, high-salinity, and drought conditions (separately), but not by abscisic acid (ABA) and heat shock. In these experiments, the downstream genes of NAC transcription factors were found to be up-regulated, including stress-responsive genes KIN1 and AMY1. To further explore the effects of DlNAC1 in response to abiotic stressors, DlNAC1 was overexpressed in tobacco, and these transgenic plants showed significantly enhanced tolerance to drought and salinity. This study suggests that in chrysanthemum, the DlNAC1 gene is involved in regulation of the response to abiotic stressors, especially in tolerance to drought and salinity.


PubMed | Fujian Institute of Subtropical Botany and Chinese Academy of Agricultural Sciences
Type: | Journal: Biochemical and biophysical research communications | Year: 2016

Folates play an important role in plant metabolism. Here we report a T-DNA insertion mutant (atdfb-3) of the plastidial folylpolyglutamate synthetase gene (AtDFB) was defective in folate metabolism and nitrogen metabolism under nitrate-limited conditions in darkness. Exogenous applied 5-formyl-tetrahydrofolate (5-F-THF) completely restored nitrogen content, soluble protein, total amino acids, individual amino acids including Glu, Gln, Asp, Asn, Pro, Arg and Met, nitrate, and endogenous 5-F-THF in atdfb-3 to the wild-type level. At the same time the application of 5-F-THF partially restored the content of Ser and nitrite in the mutant. Taken together, these results indicated that intact folate metabolism was necessary for nitrogen metabolism in Arabidopsis thaliana under nitrate-limited condition in darkness, providing novel insights into function of folate.


PubMed | Fujian Institute of Subtropical Botany
Type: Journal Article | Journal: Journal of AOAC International | Year: 2016

Subcritical fluid extraction (SFE), as a novel method, was applied to investigate the yield, quality, and sensory evaluation of headspace oil from Jasminum sambac (L.) Aiton in comparison with petroleum ether extraction (PEE). The results indicated that the yield of the headspace oil using SFE was significantly higher (P < 0.05) than when using PEE. SFE contributed to obtaining alcohols and ethers, prevented the thermal reaction of terpenes, and reduced -caryophyllene and -caryophyllene in the headspace oil. The contents of linalool (21.90%) and benzyl acetate (16.31%) were higher via SFE than PEE. In addition, the sensory evaluation of SFE was superior to PEE, indicating a fresh, jasmine-like odor and green-yellow color. Thus, SFE is an improved method for obtaining natural headspace oil from jasmine flowers.


PubMed | Fujian Institute of Subtropical Botany
Type: Journal Article | Journal: PloS one | Year: 2015

Explant browning presents a major problem for in vitro culture, and can lead to the death of the explant and failure of regeneration. Considerable work has examined the physiological mechanisms underlying Phalaenopsis leaf explant browning, but the molecular mechanisms of browning remain elusive. In this study, we used whole genome RNA sequencing to examine Phalaenopsis leaf explant browning at genome-wide level.We first used Illumina high-throughput technology to sequence the transcriptome of Phalaenopsis and then performed de novo transcriptome assembly. We assembled 79,434,350 clean reads into 31,708 isogenes and generated 26,565 annotated unigenes. We assigned Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains to each transcript. Using the transcriptome data as a reference, we next analyzed the differential gene expression of explants cultured for 0, 3, and 6 d, respectively. We then identified differentially expressed genes (DEGs) before and after Phalaenopsis explant browning. We also performed GO, KEGG functional enrichment and Pfam analysis of all DEGs. Finally, we selected 11 genes for quantitative real-time PCR (qPCR) analysis to confirm the expression profile analysis.Here, we report the first comprehensive analysis of transcriptome and expression profiles during Phalaenopsis explant browning. Our results suggest that Phalaenopsis explant browning may be due in part to gene expression changes that affect the secondary metabolism, such as: phenylpropanoid pathway and flavonoid biosynthesis. Genes involved in photosynthesis and ATPase activity have been found to be changed at transcription level; these changes may perturb energy metabolism and thus lead to the decay of plant cells and tissues. This study provides comprehensive gene expression data for Phalaenopsis browning. Our data constitute an important resource for further functional studies to prevent explant browning.

Loading Fujian Institute of Subtropical Botany collaborators
Loading Fujian Institute of Subtropical Botany collaborators