Time filter

Source Type

Jiang L.,Xiamen University | Jiang L.,Third Institute of Oceanography | Jiang L.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Res | Xu H.,Third Institute of Oceanography | And 7 more authors.
Research in Microbiology | Year: 2015

Hydrogen is an important energy source for deep-sea hydrothermal vent ecosystems. However, little is known about microbes and their role in hydrogen turnover in the environment. In this study, the diversity and physiological characteristics of fermentative hydrogen-producing microbes from deep-sea hydrothermal vent fields were described for the first time. Seven enrichments were obtained from hydrothermal vent sulfides collected from the Southwest Indian Ocean, East Pacific and South Atlantic. 16S rRNA gene analysis revealed that members of the Caloranaerobacter genus were the dominant component in these enrichments. Subsequently, three thermophilic hydrogen producers, strains H363, H53214 and DY22619, were isolated. They were phylogenetically related to species of the genus Caloranaerobacter. The H2 yields of strains H363, H53214, DY22619 and MV107, which was the type species of genus Caloranaerobacter, were 0.11, 1.21, 3.13 and 2.85 mol H2/mol glucose, respectively. Determination of the main soluble metabolites revealed that strains H363, H53214 and MV107 performed heterolactic fermentations, while strain DY22619 performed butyric acid fermentation, indicating distinct fermentation patterns among members of the genus. Finally, a diversity of forms of [FeFe]-hydrogenase with different modular structures was revealed based on draft genomic data of Caloranaerobacter strains. This highlights the complexity of hydrogen metabolism in Caloranaerobacter, reflecting adaptations to environmental conditions in hydrothermal vent systems. Collectively, results suggested that Caloranaerobacter species might be ubiquitous and play a role in biological hydrogen generation in deep-sea hydrothermal vent fields. © 2015 Institut Pasteur. Source

Ao J.,State Oceanic Administration | Ao J.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Res | Mu Y.,State Oceanic Administration | Mu Y.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Res | And 8 more authors.
Fish and Shellfish Immunology | Year: 2016

Toll-like receptors (TLRs) are key components of innate immunity that play significant roles in immune defence against pathogen invasion. In the present study, we identified a novel TLR2 homologue (LycTLR2b) in large yellow croaker (Larimichthys crocea) that shared low sequence identity with the previously reported large yellow croaker TLR2 (tentatively named LycTLR2a). The full-length cDNA of LycTLR2b was 2926 nucleotides (nt) long and encoded a protein consisting of 797 amino acids (aa). The deduced LycTLR2b protein exhibited a typical TLR domain architecture including a signal peptide, seven leucine-rich repeats (LRRs) in the extracellular region, a transmembrane domain, and a Toll-Interleukin 1 receptor (TIR) domain in the cytoplasmic region. Phylogenetic analysis showed that both LycTLR2a and LycTLR2b fall into a major clade formed by all TLR2 sequences, and are divided into two distinct branches. Genomic organization revealed that the LycTLR2b gene lacks intron, which is similar to zebrafish and human TLR2 genes, whereas the LycTLR2a gene contains multiple introns, as found in damselfish TLR2a and Fugu TLR2 genes. Syntenic analysis suggested that the occurrence of LycTLR2a and LycTLR2b may result from a relatively recent genome duplication event. LycTLR2b mRNA was constitutively expressed in all tissues examined although at different levels. Following bacterial vaccine challenge, LycTLR2b expression levels were significantly up-regulated in both spleen and head kidney tissues. Taken together, these results indicated that two different TLR2 homologues, which may play roles in antibacterial immunity, exist in large yellow croaker. © 2015 Elsevier Ltd. Source

Discover hidden collaborations