Fujian Academy of Agricultural science

Fuzhou, China

Fujian Academy of Agricultural science

Fuzhou, China
Time filter
Source Type

He Y.,Fujian Academy of Agricultural science | Zhao J.,Fujian Academy of Agricultural science | Zheng Y.,Fujian Academy of Agricultural science | Desneux N.,French National Institute for Agricultural Research | Wu K.,Chinese Academy of Agricultural Sciences
Ecotoxicology | Year: 2012

Neonicotinoid insecticides are widely used for controlling sucking pests, and sublethal effects can be expected in beneficial arthropods like natural enemies. Serangium japonicum is an important predator in many agricultural systems in China, and a potential biological control agent against Bemisia tabaci. We evaluated the toxicity of imidacloprid to S. japonicum and its impact on the functional response to B. tabaci eggs. S. japonicum adults exposed through contact to dried residues of imidacloprid at the recommended field rate on cotton against B. tabaci (4 g active ingredient per 100 l, i.e. 40 ppm [part per million]), and reduced rates (25, 20, 15 and 10 ppm) for 24 h showed high mortality rates. The mortality induced by a lowest rate, 5 ppm, was not significantly different than the control group and thus it was considered as a sublethal rate. The lethal rate 50 and hazard quotient (HQ) were estimated to be 11.54 ppm and 3.47 respectively, indicating a risk for S. japonicum in treated fields (HQ > 2). When exposed to dried residues of imidacloprid at the sublethal rate (5 ppm) on cotton leaves, functional response of S. japonicum to B. tabaci eggs was affected with an increase in handling time and a reduction in peak consumption of eggs. Imidacloprid residues also disturbed predator voracity, the number of B. tabaci eggs consumed on treated leaves being significantly lower than on untreated leaves. All effects disappeared within a few hours after transfer to untreated cotton leaves. Imidacloprid systemically applied at the recommended field rate (for cotton) showed no toxicity to S. japonicum, nor affected the functional response of the predator. Sublethal effects of imidacloprid on S. japonicum observed in our study likely negatively affect S. japonicum development and reproductive capacity and may ultimately reduce predator population growth. These results hint at the importance of assessing potential effects of imidacloprid on S. japonicum for developing effective integrated pest management programs of B. tabaci in China. © Springer Science+Business Media, LLC 2012.

Chen X.,Fujian Academy of Agricultural science | Wan X.,Fujian Academy of Agricultural science | Weng B.,Fujian Academy of Agricultural science | Huang Q.,Fujian Academy of Agricultural science
Bioresource Technology | Year: 2010

Both live plants and dried straw of water hyacinth were applied to a sequential treatment of swine wastewater for nitrogen and phosphorus reduction. In the facultative tank, the straw behaved as a kind of adsorbent toward phosphorus. Its phosphorus removal rate varied considerably with contact time between the straw and the influent. In the laboratory, the straw displayed a rapid total phosphorus reduction on a KH 2PO 4 solution. The adsorption efficiency was about 36% upon saturation. At the same time, the water hyacinth straw in the facultative tank enhanced NH 3-N removal efficiency as well. However, no adsorption was evident. This study demonstrated an economically feasible means to apply water hyacinth phosphorus straw for the swine wastewater treatment. The sequential system employed significantly reduced the land use, as compared to the wastewater stabilization pond treatment, for pollution amelioration of swine waste. © 2010 Elsevier Ltd.

Chen S.Y.,Fujian Academy of Agricultural science
Bing du xue bao = Chinese journal of virology / [bian ji, Bing du xue bao bian ji wei yuan hui] | Year: 2012

The virus strains were isolated from the liver and spleen of the dead young ducks characterized with symptoms of hemorrhagic-necrotic hepatitis. These isolates could cause the death of muscovy duck-embryo and chick-embryo. 1-day-old birds infected with these isolates had the same character with clinically dead birds and the virus could be isolated from artificially infected birds. These isolates could proliferate in MDEF and result in CPE. The virus could proliferate in the cytoplasm in order of crystals and arranged in the latlic-like. The viron was shown spherical, icosahedron, cubic symmetry, no-envelope, with double-layered capsid, about 70 nm in diameter by electron microscopy. The genome segments of the virus were consisted of L1-3, M1-3 and S1-4, which were similar to that of avian reovirus (ARV). Compared to 68.2%, 69.3% - 70.1%, respectively. The system evolution analysis showed that S3 gene coding sigmaB protein was placed in different branch of MDRV and ARV, indicating that S3 gene of the virus was different from ARV and MDRV. The main clinical symptoms and lesions of ducklings caused by the virus were different from the diseases caused by MDRV and ARV. It was concluded that the virus was a Novel duck reovirus belonging to Orthoreovirus genus of the Reoviridae family.

Yang X.,Fudan University | Wang F.,Fujian Academy of Agricultural science | Su J.,Fujian Academy of Agricultural science | Lu B.-R.,Fudan University
PLoS ONE | Year: 2012

Background: The spread of insect-resistance transgenes from genetically engineered (GE) rice to its coexisting weedy rice (O. sativa f. spontanea) populations via gene flow creates a major concern for commercial GE rice cultivation. Transgene flow to weedy rice seems unavoidable. Therefore, characterization of potential fitness effect brought by the transgenes is essential to assess environmental consequences caused by crop-weed transgene flow. Methodology/Principal Findings: Field performance of fitness-related traits was assessed in advanced hybrid progeny of F4 generation derived from a cross between an insect-resistant transgenic (Bt/CpTI) rice line and a weedy strain. The performance of transgene-positive hybrid progeny was compared with the transgene-negative progeny and weedy parent in pure and mixed planting of transgenic and nontransgenic plants under environmental conditions with natural vs. low insect pressure. Results showed that under natural insect pressure the insect-resistant transgenes could effectively suppress target insects and bring significantly increased fitness to transgenic plants in pure planting, compared with nontransgenic plants (including weedy parent). In contrast, no significant differences in fitness were detected under low insect pressure. However, such increase in fitness was not detected in the mixed planting of transgenic and nontransgenic plants due to significantly reduced insect pressure. Conclusions/Significance: Insect-resistance transgenes may have limited fitness advantages to hybrid progeny resulted from crop-weed transgene flow owning to the significantly reduced ambient target insect pressure when an insect-resistant GE crop is grown. Given that the extensive cultivation of an insect-resistant GE crop will ultimately reduce the target insect pressure, the rapid spread of insect-resistance transgenes in weedy populations in commercial GE crop fields may be not likely to happen. © 2012 Yang et al.

Chu S.S.,China Agricultural University | Feng Hu J.,Fujian Academy of Agricultural science | Liu Z.L.,China Agricultural University
Pest Management Science | Year: 2011

Background: In a screening programme for new agrochemicals from Chinese medicinal herbs, Chenopodium ambrosioides L. was found to possess strong fumigant activity against the maize weevil Sitophilus zeamais (Motsch.). Essential oil of C. ambrosioides was obtained by hydrodistillation, and the constituents were determined by GC-MS analysis. The active compounds were isolated and identified by bioassay-directed fractionation. Results: Five active compounds [(Z)-ascaridole, 2-carene, ρ-cymene, isoascaridole and α-terpinene] were isolated and identified from the essential oil from Chinese C. ambrosioides. The LC 50 values (fumigation) of the crude essential oils and the active compound (Z)-ascaridole against S. zeamais adults were 3.08 and 0.84 mg L -1 air respectively. The LD 50 values (contact toxicity) of the crude essential oil and (Z)-ascaridole against S. zeamais adults were 2.12 and 0.86 μg g -1 body weight respectively. Conclusion: The findings suggested that the essential oil of Chenopodium ambrosioides and its main active constituent, (Z)-ascaridole, may be explored as a natural potential fumigant. © 2011 Society of Chemical Industry.

Sun X.,Shandong Agricultural University | Yang Q.,University of Texas Southwestern Medical Center | Deng Z.,Zhejiang Academy of Agricultural Sciences | Ye X.,Fujian Academy of Agricultural science
Plant Physiology | Year: 2014

Alternative splicing is an essential biological process to generate proteome diversity and phenotypic complexity. Recent improvements in RNA sequencing accuracy and computational algorithms have provided unprecedented opportunities to examine the expression levels of Arabidopsis (Arabidopsis thaliana) transcripts. In this article, we analyzed 61 RNA sequencing samples from 10 totally independent studies of Arabidopsis and calculated the transcript expression levels in different tissues, treatments, developmental stages, and varieties. These data provide a comprehensive profile of Arabidopsis transcripts with single-base resolution. We quantified the expression levels of 40,745 transcripts annotated in The Arabidopsis Information Resource 10, comprising 73% common transcripts, 15% rare transcripts, and 12% nondetectable transcripts. In addition, we investigated diverse common transcripts in detail, including ubiquitous transcripts, dominant/subordinate transcripts, and switch transcripts, in terms of their expression and transcript ratio. Interestingly, alternative splicing was the highly enriched function for the genes related to dominant/subordinate transcripts and switch transcripts. In addition, motif analysis revealed that TC motifs were enriched in dominant transcripts but not in subordinate transcripts. These motifs were found to have a strong relationship with transcription factor activity. Our results shed light on the complexity of alternative splicing and the diversity of the contributing factors. © 2014 American Society of Plant Biologists. All rights reserved.

Yang D.W.,Fujian Academy of Agricultural science
Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji | Year: 2012

The yield and quality of rice are directly impacted by floral organ development in rice. Understanding of the floral development mechanism will be useful in genetic improvement of yield and quality. In this study, a rice mutant palea degradation 2 (pd2) in an indica cultivar '8PW33' was obtained after 60Co γ-ray treatment. Analysis of the mutant showed that, compared to the wild type, plant height, total grain number per panicle, and sword leaf width were significantly increased, but the seed setting rate were significantly decreased. The florets of the mutant exhibited degraded palea and sickle-shaped tortuous lemma. Detail examination using scanning electron microscopy revealed that when epidermis of the vane and lemma were normal, epidermis of the palea were arranged tightly, which might result from degraded palea. Genetic analysis supported that this mutation phenotype was controlled by a single recessive gene. Polymorphic analysis of simple sequence repeat markers demonstrated that PD2 gene is located on chromosome 9. With a larger mapping population and more indel markers, we further mapped PD2 gene between 2 indel markers with a physical region of about 82 kb. Within this region, there is a cloned gene REP1 known to control rice palea development. By comparing the DNA sequences of REP1 from pd2 and 8PW33, in combination with the results of phenotypic analysis, we concluded that PD2 is an allele of REP1.

Hunt A.G.,University of Kentucky | Xing D.,Miami University Ohio | Li Q.Q.,Fujian Academy of Agricultural science | Li Q.Q.,Xiamen University
BMC Genomics | Year: 2012

Background: Polyadenylation, an essential step in eukaryotic gene expression, requires both cis-elements and a plethora of trans-acting polyadenylation factors. The polyadenylation factors are largely conserved across mammals and fungi. The conservation seems also extended to plants based on the analyses of Arabidopsis polyadenylation factors. To extend this observation, we systemically identified the orthologs of yeast and human polyadenylation factors from 10 plant species chosen based on both the availability of their genome sequences and their positions in the evolutionary tree, which render them representatives of different plant lineages.Results: The evolutionary trajectories revealed several interesting features of plant polyadenylation factors. First, the number of genes encoding plant polyadenylation factors was clearly increased from " lower" to " higher" plants. Second, the gene expansion in higher plants was biased to some polyadenylation factors, particularly those involved in RNA binding. Finally, while there are clear commonalities, the differences in the polyadenylation apparatus were obvious across different species, suggesting an ongoing process of evolutionary change. These features lead to a model in which the plant polyadenylation complex consists of a conserved core, which is rather rigid in terms of evolutionary conservation, and a panoply of peripheral subunits, which are less conserved and associated with the core in various combinations, forming a collection of somewhat distinct complex assemblies.Conclusions: The multiple forms of plant polyadenylation complex, together with the diversified polyA signals may explain the intensive alternative polyadenylation (APA) and its regulatory role in biological functions of higher plants. © 2012 Hunt et al.; licensee BioMed Central Ltd.

Yang L.,Huaiyin Normal University | Tian D.,CAS Kunming Institute of Botany | Tian D.,Fujian Academy of Agricultural science | Todd C.D.,University of Saskatchewan | And 2 more authors.
Journal of Proteome Research | Year: 2013

Acidic soils inhibit crop yield and reduce grain quality. One of the major contributing factors to acidic soil is the presence of soluble aluminum (Al 3+) ions, but the mechanisms underlying plant responses to Al 3+ toxicity remain elusive. Nitric oxide (NO) is an important messenger and participates in various plant physiological responses. Here, we demonstrate that Al3+ induced an increase of NO in rice seedlings; adding exogenous NO alleviated the Al3+ toxicity related to rice growth and photosynthetic capacity, effects that could be reversed by suppressing NO metabolism. Comparative proteomic analyses successfully identified 92 proteins that showed differential expression after Al3+ or NO treatment. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further analyses confirmed that NO treatment reduced Al3+-induced ROS and RNS toxicities by increasing the activities and protein expression of antioxidant enzymes, as well as S-nitrosoglutathione reductase (GSNOR). Suppressing GSNOR enzymatic activity aggravated Al3+ damage to rice and increased the accumulation of RNS. NO treatment altered the expression of proteins associated with cell wall synthesis, cell division and cell structure, calcium signaling and defense responses. On the basis of these results, we propose that NO activates multiple pathways that enhance rice adaptation to Al3+ toxicity. Such findings may be applicable to crop engineering to enhance yield and improve stress tolerance. © 2013 American Chemical Society.

Liu B.,Fujian Academy of Agricultural science | Liu G.-H.,Fujian Academy of Agricultural science | Hu G.-H.,Fujian Agriculture and forestry University | Chen M.-C.,Fujian Academy of Agricultural science
International journal of systematic and evolutionary microbiology | Year: 2014

A Gram-stain-positive, short rod-shaped and motile, mildly halotolerant, endospore-forming bacterium, FJAT-13985(T), was isolated from the internal tissues of Mesona chinensis root. Strain FJAT-13985(T) grew at 20-45 °C (optimum 30 °C) and pH 5.7-9.0 (optimum pH 7.0) and in the presence of 0-2% (w/v) NaCl [optimum 1% (w/v)]. The strain was catalase-positive and oxidase-negative. The cell wall of strain FJAT-13985(T) contained meso-diaminopimelic acid and the predominant isoprenoid quinone was MK-7 (97.4%). The major fatty acids of the strain were anteiso-C15:0 (23.3%) and iso-C15:0 (40.8%). The DNA G+C content was 41.64 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FJAT-13985(T) is a member of the genus Bacillus and is most closely related to Bacillus drentensis DSM 15600(T) (98.4%), Bacillus vireti DSM 15602(T) (98.2%) and Bacillus novalis DSM 15603(T) (98.3%). DNA-DNA hybridization indicated that relatedness between strain FJAT-13985(T) and its closest relative, B. drentensis DSM 15600(T), was 36.63%. The phenotypic, chemotaxonomic and genotypic properties clearly indicate that strain FJAT-13985(T) represents a novel species of the genus Bacillus, for which the name Bacillus mesonae sp. nov. is proposed. The type strain is FJAT-13985(T) ( = DSM 25968(T) = CGMCC1.12238(T)). © 2014 IUMS.

Loading Fujian Academy of Agricultural science collaborators
Loading Fujian Academy of Agricultural science collaborators