Amersfoort, Netherlands
Amersfoort, Netherlands

Time filter

Source Type

Complete report on Peptone industry spread across 118 pages providing 17 company profiles and 187 tables and figures is available at http://www.reportsnreports.com/reports/914388-global-peptone-market-research-report-2017.html . Market Segment by Regions, this report splits Global into several key Region, with production, consumption, revenue, market share and growth rate of Peptone in these regions, from 2012 to 2022 (forecast), like North America, China, Europe, Japan, India, Southeast Asia split by product type, with production, revenue, price, market share and growth rate of each type Split by application, this report focuses on consumption, market share and growth rate of Peptone in each application. This report studies Peptone in Global market, especially in North America, Europe, China, Japan, Southeast Asia and India, focuses on top manufacturers in global market, with sales, price, revenue and market share for each manufacturer, covering Solabia, Kerry, FrieslandCampina Domo, Biospringer, Tianjiu, Titan Biotech, Zhongshi Duqing, Organotechnie, Fenglin, Thermo Fisher Scientific, Ketai, Tatua, Biotecnica, Qidi, Guizhou Xinhua, BD Biosciences and Neogen. Buy a copy at http://www.reportsnreports.com/purchase.aspx?name=914388 . The Global Microbial Peptone Industry, 2017 Market Research Report'' is a professional and in-depth study on the current state of the global Microbial Peptone industry with a focus on the global market. The report provides key statistics on the market status of the Microbial Peptone manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry. Firstly, the report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the international major industry players in detail. In this part, the report presents the company profile, product specifications, capacity, production value, and 2012-2017 market shares for each company. Through the statistical analysis, the report depicts the global total market of Microbial Peptone industry including capacity, production, production value, cost/profit, supply/demand. The total market is further divided by company, by country, and by application/type for the competitive landscape analysis. The report then estimates 2017-2022 market development trends of Microbial Peptone industry. Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out. In the end, the report makes some important proposals for a new project of Microbial Peptone Industry before evaluating its feasibility. Overall, the report provides an in-depth insight of 2012-2022 global Microbial Peptone industry covering all important parameters. The 'Global and Chinese Peptone Industry, 2012-2022 Market Research Report' is a professional and in-depth study on the current state of the global Peptone industry with a focus on the Chinese market. The report provides key statistics on the market status of the Peptone manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry. Firstly, the report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the international and Chinese major industry players in detail. In this part, the report presents the company profile, product specifications, capacity, production value, and 2012-2017 market shares for each company. Through the statistical analysis, the report depicts the global and Chinese total market of Peptone industry including capacity, production, production value, cost/profit, supply/demand and Chinese import/export. The total market is further divided by company, by country, and by application/type for the competitive landscape analysis. The report then estimates 2017-2022 market development trends of Peptone industry. Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out. In the end, the report makes some important proposals for a new project of Peptone Industry before evaluating its feasibility. Overall, the report provides an in-depth insight of 2012-2022 global and Chinese Peptone industry covering all important parameters. The Global Peptone Industry, 2016 Market Research Report'' is a professional and in-depth study on the current state of the global Peptone industry with a focus on the global market. The report provides key statistics on the market status of the Microbial Peptone manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry. Firstly, the report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the international major industry players in detail. In this part, the report presents the company profile, product specifications, capacity, production value, and 2011-2016 market shares for each company. Through the statistical analysis, the report depicts the global total market of Peptone industry including capacity, production, production value, cost/profit, supply/demand. The total market is further divided by company, by country, and by application/type for the competitive landscape analysis. The report then estimates 2016-2021 market development trends of Peptone industry. Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out. In the end, the report makes some important proposals for a new project of Peptone Industry before evaluating its feasibility. Overall, the report provides an in-depth insight of 2011-2021 global Peptone industry covering all important parameters. ReportsnReports.com is your single source for all market research needs. Our database includes 500,000+ market research reports from over 95 leading global publishers & in-depth market research studies of over 5000 micro markets. With comprehensive information about the publishers and the industries for which they publish market research reports, we help you in your purchase decision by mapping your information needs with our huge collection of reports. We provide 24/7 online and offline support to our customers.


Complete report on Peptone industry spread across 118 pages providing 17 company profiles and 187 tables and figures is available at http://www.reportsnreports.com/reports/914388-global-peptone-market-research-report-2017.html . Market Segment by Regions, this report splits Global into several key Region, with production, consumption, revenue, market share and growth rate of Peptone in these regions, from 2012 to 2022 (forecast), like North America, China, Europe, Japan, India, Southeast Asia split by product type, with production, revenue, price, market share and growth rate of each type Split by application, this report focuses on consumption, market share and growth rate of Peptone in each application. This report studies Peptone in Global market, especially in North America, Europe, China, Japan, Southeast Asia and India, focuses on top manufacturers in global market, with sales, price, revenue and market share for each manufacturer, covering Solabia, Kerry, FrieslandCampina Domo, Biospringer, Tianjiu, Titan Biotech, Zhongshi Duqing, Organotechnie, Fenglin, Thermo Fisher Scientific, Ketai, Tatua, Biotecnica, Qidi, Guizhou Xinhua, BD Biosciences and Neogen. Buy a copy at http://www.reportsnreports.com/purchase.aspx?name=914388 . The Global Microbial Peptone Industry, 2017 Market Research Report'' is a professional and in-depth study on the current state of the global Microbial Peptone industry with a focus on the global market. The report provides key statistics on the market status of the Microbial Peptone manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry. Firstly, the report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the international major industry players in detail. In this part, the report presents the company profile, product specifications, capacity, production value, and 2012-2017 market shares for each company. Through the statistical analysis, the report depicts the global total market of Microbial Peptone industry including capacity, production, production value, cost/profit, supply/demand. The total market is further divided by company, by country, and by application/type for the competitive landscape analysis. The report then estimates 2017-2022 market development trends of Microbial Peptone industry. Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out. In the end, the report makes some important proposals for a new project of Microbial Peptone Industry before evaluating its feasibility. Overall, the report provides an in-depth insight of 2012-2022 global Microbial Peptone industry covering all important parameters. The 'Global and Chinese Peptone Industry, 2012-2022 Market Research Report' is a professional and in-depth study on the current state of the global Peptone industry with a focus on the Chinese market. The report provides key statistics on the market status of the Peptone manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry. Firstly, the report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the international and Chinese major industry players in detail. In this part, the report presents the company profile, product specifications, capacity, production value, and 2012-2017 market shares for each company. Through the statistical analysis, the report depicts the global and Chinese total market of Peptone industry including capacity, production, production value, cost/profit, supply/demand and Chinese import/export. The total market is further divided by company, by country, and by application/type for the competitive landscape analysis. The report then estimates 2017-2022 market development trends of Peptone industry. Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out. In the end, the report makes some important proposals for a new project of Peptone Industry before evaluating its feasibility. Overall, the report provides an in-depth insight of 2012-2022 global and Chinese Peptone industry covering all important parameters. The Global Peptone Industry, 2016 Market Research Report'' is a professional and in-depth study on the current state of the global Peptone industry with a focus on the global market. The report provides key statistics on the market status of the Microbial Peptone manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the industry. Firstly, the report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the international major industry players in detail. In this part, the report presents the company profile, product specifications, capacity, production value, and 2011-2016 market shares for each company. Through the statistical analysis, the report depicts the global total market of Peptone industry including capacity, production, production value, cost/profit, supply/demand. The total market is further divided by company, by country, and by application/type for the competitive landscape analysis. The report then estimates 2016-2021 market development trends of Peptone industry. Analysis of upstream raw materials, downstream demand, and current market dynamics is also carried out. In the end, the report makes some important proposals for a new project of Peptone Industry before evaluating its feasibility. Overall, the report provides an in-depth insight of 2011-2021 global Peptone industry covering all important parameters. ReportsnReports.com is your single source for all market research needs. Our database includes 500,000+ market research reports from over 95 leading global publishers & in-depth market research studies of over 5000 micro markets. With comprehensive information about the publishers and the industries for which they publish market research reports, we help you in your purchase decision by mapping your information needs with our huge collection of reports. We provide 24/7 online and offline support to our customers.


van Esch B.C.A.M.,University Utrecht | Gros-van Hest M.,FrieslandCampina DOMO | Westerbeek H.,FrieslandCampina DMV | Garssen J.,University Utrecht
Toxicology Letters | Year: 2013

A transglutaminase cross-linked caseinate was designed for use in dairy products to increase the viscosity of food matrices. The difference in structure of cross-linked caseinate might have implications for the risk of developing cow's milk allergy. The sensitizing capacity and the allergenicity (the potency to induce an allergic effector response) of cross-linked sodium caseinate was investigated using a mouse model for cow's milk allergy.Mice were orally sensitized with cross-linked caseinate or caseinate using cholera toxin as adjuvant. Anaphylactic shock reactions, change in body temperature, acute allergic skin response, caseinate-, cross-linked caseinate-IgE and mMCP-1 concentrations were determined after challenge with cross-linked caseinate or caseinate. Sensitization with cross-linked caseinate did not result in anaphylactic shock symptoms, drop in body temperature or release of serum mMCP-1. A tendency toward decreased casein-specific IgE levels was observed. The allergenicity did not differ between both products. These results indicate that in already caseinate-sensitized mice, cross-linked caseinate did not provoke more pronounced allergenic reactions compared to sodium caseinate. On top of that, reduced sensitization to cross-linked caseinate was observed. Cross-linked caseinate might therefore be an interesting new dietary concept for humans at risk for food allergy although more mechanistic studies and clinical trials are needed for validation. © 2013 Elsevier Ireland Ltd.


Gupta A.J.,Wageningen University | Gruppen H.,Wageningen University | Maes D.,FrieslandCampina Domo | Boots J.-W.,FrieslandCampina Domo | Wierenga P.A.,Wageningen University
Journal of Agricultural and Food Chemistry | Year: 2013

Soy protein hydrolysates significantly enhance cell growth and recombinant protein production in cell cultures. The extent of this enhancement in cell growth and IgG production is known to vary from batch to batch. This can be due to differences in the abundance of different classes of compounds (e.g., peptide content), the quality of these compounds (e.g., glycated peptides), or the presence of specific compounds (e.g., furosine). These quantitative and qualitative differences between batches of hydrolysates result from variation in the seed composition and seed/meal processing. Although a considerable amount of literature is available that describes these factors, this knowledge has not been combined in an overview yet. The aim of this review is to identify the most dominant factors that affect hydrolysate composition and functionality. Although there is a limited influence of variation in the seed composition, the overview shows that the qualitative changes in hydrolysate composition result in the formation of minor compounds (e.g., Maillard reaction products). In pure systems, these compounds have a profound effect on the cell culture functionality. This suggests that the presence of these compounds in soy protein hydrolysates may affect hydrolysate functionality as well. This influence on the functionality can be of direct or indirect nature. For instance, some minor compounds (e.g., Maillard reaction products) are cytotoxic, whereas other compounds (e.g., phytates) suppress protein hydrolysis during hydrolysate production, resulting in altered peptide composition, and, thus, affect the functionality. © 2013 American Chemical Society.


Gupta A.J.,Wageningen University | Hageman J.A.,Wageningen University | Wierenga P.A.,Wageningen University | Boots J.-W.,FrieslandCampina Domo | Gruppen H.,Wageningen University
Process Biochemistry | Year: 2014

Soy protein hydrolysates are used as the most cost effective medium supplement to enhance cell growth and recombinant protein productivity in cell cultures. Such hydrolysates contain diverse classes of compounds, such as peptides, carbohydrates and phenolic compounds. To identify if specific compounds dominate the functionality of hydrolysates in cell cultures, thirty samples of hydrolysates with different cell culture performances were analyzed for chemical composition using an untargeted metabolomics approach. Out of 410 detected compounds, 157 were annotated. Most of the remaining 253 compounds were identified as peptides, but could not be annotated exactly. All compounds were quantified relatively, based on their average signal intensities. The cell growth and total immunoglobulin (IgG) production, relative to the CD medium (100%), ranged from 148 to 438% and 117 to 283%, respectively. Using bootstrapped stepwise regression (BSR), the compounds with the highest inclusion frequency were identified. The most important compound, i.e. phenyllactate and ferulate explained 29% and 30% of the variance for cell growth and total IgG production, respectively. Surprisingly, all compounds identified in the BSR showed a positive correlation with cell growth and total IgG production. This knowledge can be applied to monitor the production and accumulation of these compounds during the production process of hydrolysates. Consequently, the processing conditions can be modulated to produce soy protein hydrolysates with enhanced and consistent cell culture performance. © 2013 Elsevier Ltd. All rights reserved.


Weaver C.M.,Purdue University | Martin B.R.,Purdue University | Nakatsu C.H.,Purdue University | Armstrong A.P.,Purdue University | And 6 more authors.
Journal of Agricultural and Food Chemistry | Year: 2011

Galactooligosaccharides (GOS), prebiotic nondigestible oligosaccharides derived from lactose, have the potential for improving mineral balance and bone properties. This study examined the dose-response effect of GOS supplementation on calcium and magnesium absorption, mineral retention, bone properties, and gut microbiota in growing rats. Seventy-five 4-week-old male Sprague-Dawley rats were randomized into one of five treatment groups (n = 15/group) and fed a diet containing 0, 2, 4, 6, or 8% GOS by weight for 8 weeks. Dietary GOS significantly decreased cecal pH and increased cecal wall weight and content weight in a dose-dependent manner (p < 0.0001). Fingerprint patterns of the 16S rRNA gene PCR-DGGE from fecal DNA indicated the variance of bacterial community structure, which was primarily explained by GOS treatments (p = 0.0001). Quantitative PCR of the samples revealed an increase in the relative proportion of bifidobacteria with GOS (p = 0.0001). Net calcium absorption was increased in a dose-response manner (p < 0.01) with GOS supplementation. Dietary GOS also increased (p < 0.02) net magnesium absorption, femur 45Ca uptake, calcium and magnesium retention, and femur and tibia breaking strength. Distal femur total and trabecular volumetric bone mineral density (vBMD) and area and proximal tibia vBMD increased (p < 0.02) with GOS supplementation. Trabecular-rich bones, that is, those that rapidly turn over, were most benefited. Regression modeling showed that GOS benefited calcium and magnesium utilization and vBMD through decreased cecal pH, increased cecal wall and content weight, and increased proportion of bifidobacteria. © 2011 American Chemical Society.


Gupta A.J.,Wageningen University | Wierenga P.A.,Wageningen University | Gruppen H.,Wageningen University | Boots J.-W.,FrieslandCampina Domo
Biotechnology Progress | Year: 2015

The variety of compounds present in chemically defined media as well as media supplements makes it difficult to use a mechanistic approach to study the effect of supplement composition on culture functionality. Typical supplements, such as soy protein hydrolysates contain peptides, amino acids, carbohydrates, isoflavones, and saponins. To study the relative contribution of these compound classes, a set of hydrolysates were produced, containing 58-83% proteinaceous material and 5-21% carbohydrates. While the content of the different compounds classes varied, the composition (e.g., peptide profiles, carbohydrate composition) did not vary in hydrolysates. The hydrolysates were supplemented to a chemically defined medium in cell culture, based on equal weight and on equal protein levels. The latter showed that an increase in the carbohydrate concentration significantly (P value<0.004) increased integral viable cell density (IVCD) (R=0.7) and decreased total IgG (R=-0.7) and specific IgG production (R=-0.9). The extrapolation of effects of protein concentration showed that an increase in protein concentration increased total and specific IgG production and suppressed IVCD. In addition to proteins and carbohydrates, the functionality of soy protein hydrolysates may be modulated by the presence of other minor compounds. In the current study, the large differences in the balance between total proteins and total carbohydrates in the supplemented media seem to be a main factor influencing the balance between the viable cell density, total IgG, and specific IgG production. © 2015 American Institute of Chemical Engineers Biotechnol.


Ten Bruggencate S.J.M.,NIZO Food Research | Snel J.,NIZO Food Research | Schoterman M.H.C.,FrieslandCampina Domo | Ertmann E.,FrieslandCampina Domo | And 4 more authors.
British Journal of Nutrition | Year: 2011

Previous animal and human studies have shown protective effects of Ca on the resistance to enteropathogenic infections. Most interventions were performed with calcium phosphate and little is known about the protective effect of other dietary sources of Ca. Therefore, we investigated the efficacy of several Ca salts to enhance intestinal resistance to Salmonella enteritidis infection. Rats (n 7-8 per group) were fed a high-fat, Western human-style, purified diet with a low Ca content (20mmol calcium phosphate/kg; negative control group) or the same diet supplemented with either (extra) calcium phosphate, milk Ca, calcium chloride or calcium carbonate (total of 100mmol Ca supplement/kg). Diets contained Cr-EDTA for assessment of incremental changes in intestinal permeability. After an adaptation period of 2 weeks, animals were orally infected with S. enteritidis to mimic a human-relevant foodborne infection. Ca supplement-induced changes on faecal lactobacilli and enterobacteria were studied before infection. Changes in intestinal permeability were determined by measuring urinary Cr with time. Persistence of Salmonella was determined by studying faecal excretion of this pathogen in time. Overall, all Ca salts increased resistance towards Salmonella. After infection, body weight gain and food intake were higher in the calcium phosphate group. Calcium phosphate and milk Ca decreased faecal enterobacteria before infection. All Ca salts decreased infection-induced intestinal permeability and persistence of Salmonella. Calcium phosphate, milk Ca, calcium carbonate and calcium chloride are able to enhance the intestinal resistance to Salmonella in rats. © 2010 The Authors.


Albrecht S.,Wageningen University | Schols H.A.,Wageningen University | Klarenbeek B.,FrieslandCampina Domo | Voragen A.G.J.,Wageningen University | Gruppen H.,Wageningen University
Journal of Agricultural and Food Chemistry | Year: 2010

The analysis and quantification of (galacto)oligosaccharides from food matrices demands both a reproducible extraction method as well as a sensitive and accurate analytical method. Three typical matrices, namely, infant formula, fruit juice, and a maltodextrin-rich preparation, to which a commercial galactooligosaccharide mixture was added in a product concentration range from 1.25 to 30%, served as model substrates. Solid-phase extraction on graphitized carbon material upon enzymatic amyloglucosidase pretreatment enabled a good recovery and a selective purification of the different galactooligosaccharide structures from the exceeding amounts of particularly lactose and maltodextrins. With the implementation of capillary electrophoresis in combination with laser-induced fluorescence (CE-LIF) detection, a new possibility facilitating a sensitive qualitative and quantitative determination of the galactooligosaccharide contents in the different food matrices is outlined. Simultaneous monitoring and quantifying prebiotic oligosaccharides embedded in food matrices presents a promising and important step toward an efficient monitoring of individual oligosaccharides and is of interest for research areas dealing with small quantities of oligosaccharides embedded in complex matrices, e.g., body liquids. © 2010 American Chemical Society.


PubMed | Wageningen University and FrieslandCampina Domo
Type: Journal Article | Journal: Biotechnology progress | Year: 2015

The variety of compounds present in chemically defined media as well as media supplements makes it difficult to use a mechanistic approach to study the effect of supplement composition on culture functionality. Typical supplements, such as soy protein hydrolysates contain peptides, amino acids, carbohydrates, isoflavones, and saponins. To study the relative contribution of these compound classes, a set of hydrolysates were produced, containing 58-83% proteinaceous material and 5-21% carbohydrates. While the content of the different compounds classes varied, the composition (e.g., peptide profiles, carbohydrate composition) did not vary in hydrolysates. The hydrolysates were supplemented to a chemically defined medium in cell culture, based on equal weight and on equal protein levels. The latter showed that an increase in the carbohydrate concentration significantly (P value<0.004) increased integral viable cell density (IVCD) (R=0.7) and decreased total IgG (R=-0.7) and specific IgG production (R=-0.9). The extrapolation of effects of protein concentration showed that an increase in protein concentration increased total and specific IgG production and suppressed IVCD. In addition to proteins and carbohydrates, the functionality of soy protein hydrolysates may be modulated by the presence of other minor compounds. In the current study, the large differences in the balance between total proteins and total carbohydrates in the supplemented media seem to be a main factor influencing the balance between the viable cell density, total IgG, and specific IgG production.

Loading FrieslandCampina Domo collaborators
Loading FrieslandCampina Domo collaborators