French Research Institute for Exploitation of the Sea
Plouzane, France

The Institut français de recherche pour l'exploitation de la mer is an oceanographic institution in France. Wikipedia.

Time filter
Source Type

French Research Institute for Exploitation of the Sea | Date: 2017-03-29

The invention provides a low-molecular-weight (15 kDa) over-sulfated exopolysaccharide (GYS15) prepared from a marine native exopolysaccharide excreted by a mesophilic marine bacterium from a deep-sea hydrothermal environment, and relates to the use of this low-molecular-weight over-sulfated exopolysaccharide for the prevention or inhibition of metastases formation.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-07-2015 | Award Amount: 6.65M | Year: 2016

The project MERCES is focused on the restoration of different degraded marine habitats, with the aim of: 1) assessing the potential of different technologies and approaches; 2) quantifying the returns in terms of ecosystems services and their socio-economic impacts; 3) defining the legal-policy and governance frameworks needed to optimize the effectiveness of the different restoration approaches. Specific aims include: a) improving existing, and developing new, restoration actions of degraded marine habitats; b) increasing the adaptation of EU degraded marine habitats to global change; c) enhancing marine ecosystem resilience and services; d) conducting cost-benefit analyses for marine restoration measures; e) creating new industrial targets and opportunities. To achieve these objectives MERCES created a multi-disciplinary consortium with skills in marine ecology, restoration, law, policy and governance, socio-economics, knowledge transfer, dissemination and communication. MERCES will start from the inventory of EU degraded marine habitats (WP1), conduct pilot restoration experiments (WP2, WP3, WP4), assess the effects of restoration on ecosystem services (WP5). The legal, policy and governance outputs will make effective the potential of marine restoration (WP6) and one dedicated WP will assess the socio-economic returns of marine ecosystems restoration (WP7). The transfer of knowledge and the links with the industrial stakeholders will be the focus of WP8. The results of MERCES will be disseminated to the widest audience (WP9). The project will be managed through a dedicated management office (WP10). MERCES will contribute to the Blue Growth by: i) improving the EU scientific knowledge on marine restoration, ii) contributing to EU Marine Directives; iii) implementing the Restoration Agenda, iv) enhancing the industrial capacity in this field, v) increasing the competitiveness of EU in the world market of restoration, and vi) offering new employment opportunities.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-09-2016 | Award Amount: 15.49M | Year: 2016

The overall objective of INTAROS is to develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing observing systems and contribute with innovative solutions to fill some of the critical gaps in the in situ observing network. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism, fisheries), in order to strengthen the societal and economic role of the Arctic region and support the EU strategy for the Arctic and related maritime and environmental policies.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: INFRAIA-01-2016-2017 | Award Amount: 10.00M | Year: 2016

The SeaDataNet pan-European infrastructure has been developed by NODCs and major research institutes from 34 countries. Over 100 marine data centres are connected and provide discovery and access to data resources for all European researchers. Moreover, SeaDataNet is a key infrastructure driving several portals of the European Marine Observation and Data network (EMODnet), initiated by EU DG-MARE for Marine Knowledge, MSFD, and Blue Growth. SeaDataNet complements the Copernicus Marine Environmental Monitoring Service (CMEMS), coordinated by EU DG-GROW. However, more effective and convenient access is needed to better support European researchers. The standards, tools and services developed must be reviewed and upgraded to keep pace with demand, such as developments of new sensors, and international and IT standards. Also EMODnet and Copernicus pose extra challenges to boost performance and foster INSPIRE compliance. More data from more data providers must be made available, from European and international research projects and observing programmes. SeaDataCloud aims at considerably advancing SeaDataNet services and increasing their usage, adopting cloud and HPC technology for better performance. More users will be engaged and for longer sessions by including advanced services in a Virtual Research Environment. Researchers will be empowered with a collection of services and tools, tailored to their specific needs, supporting marine research and enabling generation of added-value products. Data concern the wide range of in situ observations and remote sensing data. To have access to the latest cloud technology and facilities, SeaDataNet will cooperate with EUDAT, a network of computing infrastructures that develop and operate a common framework for managing scientific data across Europe. SeaDataCloud will improve services to users and data providers, optimise connecting data centres and streams, and interoperate with other European and international networks.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SFS-10b-2015 | Award Amount: 5.41M | Year: 2016

The overarching goal of VIVALDI is to increase the sustainability and competitiveness of the European shellfish industry by improving the understanding of bivalve diseases and by developing innovative solutions and tools for the prevention, control and mitigation of the major pathogens affecting the main European farmed shellfish species: Pacific oyster (Crassostrea gigas), mussels (Mytilus edulis and M. galloprovincialis), European flat oyster (Ostrea edulis), clams (Venerupis philipinarum) and scallops (Pecten maximus ). The project addresses the most harmful pathogens affecting either one or more of these shellfish species: the virus OsHV-1, Vibrio species including V. aestuarianus, V. splendidus, V. harveyi and V. tapetis, as well as the parasite Bonamia ostreae. The project is committed to provide practical solutions based on the most advanced knowledge. VIVALDI will dissect the disease mechanisms associated with pathogen virulence and pathogenesis and host immune responses, develop in vivo and in vitro models, and apply omic approaches that will help the development of diagnostic tools and drugs against pathogen targets, and breeding programmes in a collaborative effort with industrial partners. The proposal will include a global shellfish health approach, recognising that cultured bivalves are often exposed to several pathogens simultaneously, and that disease outbreaks can be due to the combined effect of two or more pathogens. The proposal will also investigate advantages and risks of the used of disease-resistant selected animals in order to improve consumer confidence and safety. VIVALDI will be both multi- and trans-disciplinary. In order to cover both basic and applied levels from molecules to farm, the proposal will integrate partners with a broad range of complementary expertises in pathology and animal health, epidemiology, immunology, molecular biology, genetics, genomics and food safety.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-01-2015 | Award Amount: 9.21M | Year: 2016

ATLAS creates a dynamic new partnership between multinational industries, SMEs, governments and academia to assess the Atlantics deep-sea ecosystems and Marine Genetic Resources to create the integrated and adaptive planning products needed for sustainable Blue Growth. ATLAS will gather diverse new information on sensitive Atlantic ecosystems (incl. VMEs and EBSAs) to produce a step-change in our understanding of their connectivity, functioning and responses to future changes in human use and ocean climate. This is possible because ATLAS takes innovative approaches to its work and interweaves its objectives by placing business, policy and socioeconomic development at the forefront with science. ATLAS not only uses trans-Atlantic oceanographic arrays to understand and predict future change in living marine resources, but enhances their capacity with new sensors to make measurements directly relevant to ecosystem function. The ATLAS team has the track record needed to meet the projects ambitions and has already developed a programme of 25 deep-sea cruises, with more pending final decision. These cruises will study a network of 12 Case Studies spanning the Atlantic including sponge, cold-water coral, seamount and mid-ocean ridge ecosystems. The team has an unprecedented track record in policy development at national, European and international levels. An annual ATLAS Science-Policy Panel in Brussels will take the latest results and Blue Growth opportunities identified from the project directly to policy makers. Finally, ATLAS has a strong trans-Atlantic partnership in Canada and the USA where both government and academic partners will interact closely with ATLAS through shared cruises, staff secondments, scientific collaboration and work to inform Atlantic policy development. ATLAS has been created and designed with our N American partners to foster trans-Atlantic collaboration and the wider objectives of the Galway Statement on Atlantic Ocean Cooperation.

Agency: European Commission | Branch: H2020 | Program: MSCA-RISE | Phase: MSCA-RISE-2016 | Award Amount: 1.60M | Year: 2017

The GHaNA project aims to explore and characterize a new marine bioresource, for blue biotechnology applications in aquaculture, cosmetics and possibly food and health industry. The project will determine the biological and chemical diversity of Haslea diatoms to develop mass-scale production for viable industrial applications by maximising biomass production and associated high-value compound production, including terpenoids, marennine-like pigments, lipids and silica skeletons. The genus Haslea species type H. ostrearia, produces marennine, a water-soluble blue pigment used for greening oysters in Western France, which is also a bioactive molecule. Haslea diatoms have thus a high potential for use in (1) existing oyster farming, (2) production of pigments and bioactive compounds with natural antibacterial properties, (3) application as a colouring agent within industry, and (4) use of silica skeletons as inorganic biocharges in the formulation of new elastomeric materials. This will be achieved through fundamental and applied-oriented research to isolate fast- growing strains of Haslea, optimising their growth environment to increase marennine and other high-value compound productivity; to develop blue biotechnology specifically applied to benthic microalgae (biorefinery approach, processes); and to develop industrial exploitation of colouring and bioactive compounds through commercial activities of aquaculture, food, cosmetics and health.

Agency: European Commission | Branch: H2020 | Program: RIA | Phase: BG-02-2015 | Award Amount: 5.59M | Year: 2016

CERES advances a cause-and-effect understanding of how future climate change will influence Europes most important fish and shellfish populations, their habitats, and the economic activities dependent on these species. CERES will involve and closely cooperate with industry and policy stakeholders to define policy, environment, social, technological, law and environmental climate change scenarios to be tested. This four-year project will: 1. Provide regionally relevant short-, medium- and long-term future, high resolution projections of key environmental variables for European marine and freshwater ecosystems; 2. Integrate the resulting knowledge on changes in productivity, biology and ecology of wild and cultured animals (including key indirect / food web interactions), and scale up to consequences for shellfish and fish populations, assemblages as well as their ecosystems and economic sectors; 3. Utilize innovative risk-assessment methodologies that encompass drivers of change, threats to fishery and aquaculture resources, expert knowledge, barriers to adaptation and likely consequences if mitigation measures are not put in place; 4. Anticipate responses and assist in the adaptation of aquatic food production industries to underlying biophysical changes, including developing new operating procedures, early warning methods, infrastructures, location choice, and markets; 5. Create short-, medium- and long-term projections tools for the industry fisheries as well as policy makers to more effectively promote blue growth of aquaculture and fisheries in different regions; 6. Consider market-level responses to changes (both positive and negative) in commodity availability as a result of climate change; 7. Formulate viable autonomous adaptation strategies within the industries and for policy to circumvent/prevent perceived risks or to access future opportunities; 8. Effectively communicate these findings and tools to potential end-users and relevant stakeholders.

Agency: European Commission | Branch: H2020 | Program: CSA | Phase: BG-13-2016 | Award Amount: 3.00M | Year: 2016

The BLUEMED Project is a Coordination and Support Action for the exploitation of the BLUEMED Research and Innovation Initiative for blue jobs and growth in the Mediterranean area, with particular reference to the implementation of the BLUEMED Strategic Research and Innovation Agenda (SRIA). The ultimate objective is to support the activation of sustainable blue innovation and growth, by fostering integration of knowledge and efforts of relevant stakeholders from EU Member States of the Mediterranean Basin, and then among these, other EU and non-EU Countries. To this end, the project will set the scene for the effective coordination of marine and maritime research and innovation activities in the long term. In particular, the Work Package 2 will consolidate the BLUEMED SRIA, develop the BLUEMED Implementation Plan, and promote joint implementation. Four dedicated working Platforms on knowledge, economy, technology, and policy will be set up to allow representatives from research, private sector, public administration, and civil society to work together, pivoting on identified key players of these sectors at national level. The Work Package 3 will address relevant framework conditions for efficiently implementing actions, including indicators and assessment methodologies, and key enabling factors such as research infrastructures, data policies, and human resources. Feasibility studies on specific priorities will be developed by the Start-up Actions under Work Package 4. The Work Package 5 will be finally devoted to enlarge the participation to non-EU countries, through connection with project and other suitable activities for promoting the BLUEMED concept and involve all countries in the perspective of a global Mediterranean. The coordination and management of the project, the functioning of the governance as well as communication and dissemination activities will be carried out within Work Package 1.

Agency: European Commission | Branch: H2020 | Program: IA | Phase: FTIPilot-01-2016 | Award Amount: 3.47M | Year: 2017

Tocardo International has in the past ten years developed a technology for tidal turbines for generating tidal power from flowing water. For offshore application, integrated tidal system are needed that require low upfront investments (CAPEX), have low maintenance and operation costs (OPEX) and produce large amount of kWh. Tocardo International has developed an solution which fulfils these requirements. The objective of the InToTidal project is to execute the last step of the develop and demonstration of an integrated and generic solution for offshore tidal energy production, making it ready for successful commercial business application. The system will be tested and demonstrated in this project, while the resulting system will be used for long term testing after the project. Tocardo formed a strong consortium with EMEC, Infremer and LEASK Marine to be able to make this project a success. With a large market potential and strong competitive position, Tocardo is able to grow into a strong and powerful company with annual turnover of more than 180 Mio Euro per year within 3 years (providing work to 60 own employed FTEs in 2020) and growing towards a 1,0 Billion euro turnover in 2025 providing jobs for 600 own personnel in 2025 as well as >1000 jobs in the supply chain.

Loading French Research Institute for Exploitation of the Sea collaborators
Loading French Research Institute for Exploitation of the Sea collaborators