Time filter

Source Type

Ribeiro-Palau R.,French National Laboratory of Metrology and Testing
Nature Nanotechnology | Year: 2015

The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature. © 2015 Nature Publishing Group Source

Espel P.,French National Laboratory of Metrology and Testing
Metrologia | Year: 2010

This paper describes precision measurement methods developed at the Laboratoire national de métrologie et d'essais (LNE) for the calibration of flickermeters. Three methods are compared: one method involves calculating the rms value of each ac voltage period of the modulated signal in the time domain whereas the other methods are based on spectral analysis. The absolute standard uncertainty (1σ) is estimated to be a few parts in 105 for all methods. © 2010 BIPM & IOP Publishing Ltd. Source

Delatour V.,French National Laboratory of Metrology and Testing
Clinica chimica acta; international journal of clinical chemistry | Year: 2012

The reliability of biological tests is a major issue for patient care in terms of public health that involves high economic stakes. Reference methods, as well as regular external quality assessment schemes (EQAS), are needed to monitor the analytical performance of field methods. However, control material commutability is a major concern to assess method accuracy. To overcome material non-commutability, we investigated the possibility of using lyophilized serum samples together with a limited number of frozen serum samples to assign matrix-corrected target values, taking the example of glucose assays. Trueness of the current glucose assays was first measured against a primary reference method by using human frozen sera. Methods using hexokinase and glucose oxidase with spectroreflectometric detection proved very accurate, with bias ranging between -2.2% and +2.3%. Bias of methods using glucose oxidase with spectrophotometric detection was +4.5%. Matrix-related bias of the lyophilized materials was then determined and ranged from +2.5% to -14.4%. Matrix-corrected target values were assigned and used to assess trueness of 22 sub-peer groups. We demonstrated that matrix-corrected target values can be a valuable tool to assess field method accuracy in large scale surveys where commutable materials are not available in sufficient amount with acceptable costs. Copyright © 2012 Elsevier B.V. All rights reserved. Source

Boineau F.,French National Laboratory of Metrology and Testing
PTB - Mitteilungen Forschen und Prufen | Year: 2011

The Laboratoire national de métrologie et d'essais (LNE) developed a constant pressure gas flowmeter to implement the continuous expansion standard. The characterization of this new standard and the associated uncertainty budget are presented in this paper. Comparisons were carried out between the constant pressure flowmeter and our other flowmeters for leak rates flowing in vacuum (constant volume flowmeter) and atmospheric pressure (infrared detection flowmeter). Source

Nanotechnology is a key enabling technology. Still existing uncertainties concerning EHS need to be addressed to explore the full potential of this new technology. One challenge consists in the development of methods that reliably identify, characterize and quantify nanomaterials (NM) both as substance and in various products and matrices. The European Commission has recently recommended a definition of NM as reference to determine whether an unknown material can be considered as nanomaterial (2011/696/EU). The proposed NanoDefine project will explicitly address this question. A consortium of European top RTD performers, metrology institutes and nanomaterials and instrument manufacturers has been established to mobilize the critical mass of expertise required to support the implementation of the definition. Based on a comprehensive evaluation of existing methodologies and a rigorous intra-lab and inter-lab comparison, validated measurement methods and instruments will be developed that are robust, readily implementable, cost-effective and capable to reliably measure the size of particles in the range of 1100 nm, with different shapes, coatings and for the widest possible range of materials, in various complex media and products. Case studies will assess their applicability for various sectors, including food/feed, cosmetics etc. One major outcome of the project will be the establishment of an integrated tiered approach including validated rapid screening methods (tier 1) and validated in depth methods (tier 2), with a user manual to guide end-users, such as manufacturers, regulatory bodies and contract laboratories, to implement the developed methodology. NanoDefine will be strongly linked to main standardization bodies, such as CEN, ISO and OECD, by actively participating in TCs and WGs, and by proposing specific ISO/CEN work items, to integrate the developed and validated methodology into the current standardization work.

Discover hidden collaborations