Time filter

Source Type

Patent
Compagnie Gervais Danone and French National Institute for Agricultural Research | Date: 2015-04-15

The present invention provides the use of Lactobacillus rhamnosus, for maintaining or increasing the intestinal microbiota diversity in a subject.


Patent
Compagnie Gervais Danone and French National Institute for Agricultural Research | Date: 2015-04-15

The present invention provides the use of Lactobacillus paracasei, for maintaining or increasing the intestinal microbiota diversity in a subject having dysbiosis.


Patent
French National Institute for Agricultural Research, French National Conservatory of Arts, Crafts, Institute Science Industries Vivant Et Environnement Agroparistech, Brodart and French National Center for Scientific Research | Date: 2015-03-04

The use of a composition including at least one saturated free fatty acid and at least one unsaturated free fatty acid as additive, for modifying the mechanical properties of a thermoplastic polymer material. An additivated thermoplastic polymer material and a process for producing same are also described.


Patent
French National Institute for Agricultural Research | Date: 2015-03-27

The invention relates to a method for increasing the frequency of meiotic recombination in plants, by inhibiting the RECQ4 or TOP3A protein, especially by mutagenesis or extinction of the RECQ4 or TOP3A gene coding for said protein. The invention can be used especially in the field of plant breeding and genetic mapping.


Patent
Kallistem, French National Center for Scientific Research, French National Institute for Agricultural Research and Ecole Normale Superieure de Lyon | Date: 2014-12-19

The present invention relates to a process for in vitro spermatogenesis from male germinal tissue comprising conducting maturation of testicular tissue comprising germ cells in a bioreactor which is made of a biomaterial and comprises at least one cavity wherein the germinal tissue is placed, and recovering elongated spermatids and/or spermatozoa.


Patent
French National Institute for Agricultural Research and French National Center for Scientific Research | Date: 2017-03-15

The present invention relates to novel fusion polypeptides and the uses thereof. The invention particularly relates to conjugated coat proteins derived from nepoviruses, virus-like particles made with such proteins, and the uses thereof. The particles of the invention can expose and/or encage molecules of interest and have utility in various fields such as the pharmaceutical, agro, or veterinary areas.


Grant
Agency: Cordis | Branch: H2020 | Program: ERA-NET-Cofund | Phase: SC5-02-2015 | Award Amount: 78.28M | Year: 2016

Within the European Research Area (ERA), the ERA4CS Consortium is aiming to boost, research for Climate Services (CS), including climate adaptation, mitigation and disaster risk management, allowing regions, cities and key economic sectors to develop opportunities and strengthen Europes leadership. CS are seen by this consortium as driven by user demands to provide knowledge to face impacts of climate variability and change, as well as guidance both to researchers and decisionmakers in policy and business. ERA4CS will focus on the development of a climate information translation layer bridging user communities and climate system sciences. It implies the development of tools, methods, standards and quality control for reliable, qualified and tailored information required by the various field actors for smart decisions. ERA4CS will boost the JPI Climate initiative by mobilizing more countries, within EU Member States and Associated Countries, by involving both the research performing organizations (RPOs) and the research funding organizations (RFOs), the distinct national climate services and the various disciplines of academia, including Social Sciences and Humanities. ERA4CS will launch a joint transnational co-funded call, with over 16 countries and up to 75M, with two complementary topics: (i) a cash topic, supported by 12 RFOs, on co-development for user needs and action-oriented projects; (ii) an in-kind topic, supported by 28 RPOs, on institutional integration of the research components of national CS. Finally, ERA4CS additional activities will initiate a strong partnership between JPI Climate and others key European and international initiatives (as Copernicus, KIC-Climate, JPIs, WMO/GFCS, Future Earth, Belmont Forum) in order to work towards a common vision and a multiyear implementation strategy, including better co-alignment of national programs and activities up to 2020 and beyond.


Grant
Agency: Cordis | Branch: H2020 | Program: CSA | Phase: INFRADEV-02-2016 | Award Amount: 4.00M | Year: 2017

Sustainable food security and increasing availability of plant biomass for human nutrition and bioindustries is the key challenge for the coming decades. The analysis of crop performance with respect to structure, function, quality and interaction with the environment (phenotyping) remains the bottleneck for the exploitation of crop genetic diversity required for the enhancement of plant productivity and progress in plant breeding. This requires substantial and concerted action to develop and to increase the availability of phenotyping infrastructures. The European Strategic Forum for Research Infrastructure (ESFRI) has identified Plant Phenotyping as a priority for the European research area and EMPHASIS has been listed on the ESFRI ROADMAP as an infrastructure project to develop and implement a pan-European plant phenotyping infrastructure. The project EMPHASIS-PREP will provide the basis for the establishment the legal framework, the business plan and preparation of an information system for a sustainable and innovative pan-European infrastructure for plant phenotyping within the framework of EMPHASIS. EMPHASIS-PREP will establish a transparent, open and inclusive process, the project partners will foster efficient work in the project in close cooperation with the European plant phenotyping community and all stakeholders. EMPHASIS-PREP includes four major steps: i) mapping (infrastructure, funders, access procedure and models, stakeholder community, e-infrastructure, imaging approaches, legal and governance scenarios); ii) gapping - analysing the gaps and limitations based on the mapping activities; iii) developing strategies to address the gaps; iv) combining the strategies in a business plan for future operation of EPMPHASIS within a corresponding legal framework.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NMBP-26-2016 | Award Amount: 7.49M | Year: 2017

The npSCOPE project aims at developing a new integrated instrument (the nanoparticle-scope) optimised for providing a complete physico-chemical characterisation of nanoparticles both in their pristine form or embedded in complex matrices such as biological tissues. Using sophisticated correlative data processing methodologies and algorithms based on statistical methods in conjunction with appropriate visualisation methods of the results, the npSCOPE instrument will allow rapid, accurate and reproducible measurements. The instrument will be based on the Gas Field Ion Source as a key enabling technology, which we will combine with a number of new developments in the field of electron and ion microscopy. We will progressively ramp up the TRL of the instrument and associated methodologies to reach TRL 7 by the end of the project. The new technology, and all related processes and methodologies, will be validated via round-robin studies performed independently by several partner institutions, crosschecked with conventional analysis technologies to demonstrate the advancements and capabilities of the npSCOPE technology and benchmarked in representative case studies. Given the low sample quantities needed and the strong potential of the instrument to generate high-quality physico-chemical data on nanomaterials, both ex situ and in situ, npSCOPE will allow a major step forward in defining key descriptors for read-across, grouping, in silico modelling and creating meaningful relationships with biological activity data for QSAR purposes. To reach these objectives, the project consortium will be composed of research centres internationally recognised for innovative instrument developments, well-established instrument manufacturers and experts in nanotoxicology in various fields of application to demonstrate and validate the applicability of npSCOPE for the risk assessment of nanomaterials in consumer products.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: REV-INEQUAL-07-2016 | Award Amount: 5.00M | Year: 2017

IMAJINE aims to formulate new integrative policy mechanisms to enable European, national and regional government agencies to more effectively address territorial inequalities within the European Union. It responds to evidence that spatial inequalities within the EU are increasing, contrary to the principle of territorial cohesion embedded as a third dimension of the European Social Model in the Treaty of Lisbon, and is particularly timely in examining the geographically differentiated impacts of the post-2008 economic crisis and the adoption of austerity policies. IMAJINE uniquely proposes to address the problem of territorial inequalities through an inter-disciplinary and multi-scalar approach that integrates perspectives from economics, human geography, political science and sociology and combines macro-scale econometric analysis and the generation and analysis of new quantitative survey data with regionally-focused qualitative empirical case study research in 11 EU member states; delivered by a multi-disciplinary and multi-national consortium. As such the research builds on the conceptual and methodological state of the art in several disciplines and advances conceptual understanding and the empirical knowledge base by producing new primary data, applying new analytical tests to secondary data and integrating the results along with insights from relational geographical theory and the concept of spatial justice. In particular, the centrality of spatial justice emphasizes the political as well as economic dimensions of territorial inequalities, and IMAJINE will move beyond existing knowledge by considering relationships between measured and perceived inequalities, models of multi-level policy-making and public service delivery, and support for territorial autonomy movements. IMAJINE will further translate these scientific insights into policy applications through participatory scenario building exercises with governance and civil society stakeholders.

Loading French National Institute for Agricultural Research collaborators
Loading French National Institute for Agricultural Research collaborators