Freie University BerlinBerlin

Freie, Germany

Freie University BerlinBerlin

Freie, Germany
Time filter
Source Type

Jobst A.,Ludwig Maximilians University of Munich | Padberg F.,Ludwig Maximilians University of Munich | Mauer M.-C.,Ludwig Maximilians University of Munich | Daltrozzo T.,Ludwig Maximilians University of Munich | And 10 more authors.
Frontiers in Human Neuroscience | Year: 2016

Interpersonal problems and affective dysregulation are core characteristics of borderline personality disorder (BPD). BPD patients predominantly show unresolved attachment representations. The oxytocin (OT) system is associated with human social attachment and affiliative behavior, and OT dysregulation may be related to distinct attachment characteristics. Here, we investigated whether attachment representations are related to peripheral OT levels in BPD patients. Twenty-one female BPD patients and 20 age-, gender-, and education-matched healthy controls (HCs) were assessed with clinical scales and measures of interpersonal and attachment-related characteristics, including the Adult Attachment Projective Picture System (AAP). Plasma OT concentrations were measured prior to and during social exclusion in a virtual ball tossing game (Cyberball). The majority of BPD patients (63.2%) but no HCs showed unresolved (disorganized) attachment representations. In this subgroup of patients, baseline OT plasma levels were significantly lower than in BPD patients with organized attachment representations. This pilot study extends previous findings of altered OT regulation in BPD as a putative key mechanism underlying interpersonal dysregulation. Our results provide first evidence that altered OT plasma levels are related to disorganized attachment representations in BPD patients. © 2016 Jobst, Padberg, Mauer, Daltrozzo, Bauriedl-Schmidt, Sabass, Sarubin, Falkai, Renneberg, Zill, Gander and Buchheim.

Bourgeois A.,CNRS Developmental Biology Laboratory | Bourgeois A.,French Institute of Health and Medical Research | Esteves De Lima J.,CNRS Developmental Biology Laboratory | Esteves De Lima J.,French Institute of Health and Medical Research | And 6 more authors.
BMC Developmental Biology | Year: 2015

Background: Components of the limb musculoskeletal system have distinct mesoderm origins. Limb skeletal muscles originate from somites, while the skeleton and attachments (tendons and connective tissues) derive from limb lateral plate. Despite distinct mesoderm origins, the development of muscle, skeleton and attachments is highly coordinated both spatially and temporally to ensure complete function of the musculoskeletal system. A system to study molecular interactions between somitic-derived tissues (muscles) and lateral-plate-derived tissues (skeletal components and attachments) during limb development is missing. Results: We designed a gene delivery system in chick embryos with the ultimate aim to study the interactions between the components of the musculoskeletal system during limb development. We combined the Tol2 genomic integration system with the viral T2A system and developed new vectors that lead to stable and bicistronic expression of two proteins at comparable levels in chick cells. Combined with limb somite and lateral plate electroporation techniques, two fluorescent reporter proteins were co-expressed in stoichiometric proportion in the muscle lineage (somitic-derived) or in skeleton and their attachments (lateral-plate-derived). In addition, we designed three vectors with different promoters to target muscle cells at different steps of the differentiation process. Conclusion: Limb somite electroporation technique using vectors containing these different promoters allowed us to target all myogenic cells, myoblasts or differentiated muscle cells. These stable and promoter-specific vectors lead to bicistronic expression either in somitic-derived myogenic cells or lateral plate-derived cells, depending on the electroporation sites and open new avenues to study the interactions between myogenic cells and tendon or connective tissue cells during limb development. © 2015 Bourgeois et al.

Ivanusic D.,Robert Koch InstituteBerlin | Ivanusic D.,Freie University BerlinBerlin | Heinisch J.J.,University of Osnabrück | Eschricht M.,Robert Koch InstituteBerlin | And 2 more authors.
BioTechniques | Year: 2015

Yeast-based methods are still the workhorse for the detection of proteinprotein interactions (PPIs) in vivo. Yeast two-hybrid (Y2H) systems, however, are limited to screening for a specific group of molecules that interact in a particular cell compartment. For this reason, the splitubiquitin system (SUS) was developed to allow screening of cDNA libraries of full-length membrane proteins for protein-protein interactions in Saccharomyces cerevisiae. Here we demonstrate that a modification of the widely used membrane SUS involving the transmembrane (TM) domain of the yeast receptor Wsc1 increases the stringency of screening and improves the selectivity for proteins localized in the plasma membrane (PM). © 2015 Eaton Publishing Company. All rights reserved.

PubMed | University of Aarhus, Bournemouth University, Charité - Medical University of Berlin, Medical Research Council Cognition and Brain science Unit Cambridge and 2 more.
Type: | Journal: Frontiers in human neuroscience | Year: 2016

Atypical language is a fundamental feature of autism spectrum conditions (ASC), but few studies have examined the structural integrity of the arcuate fasciculus, the major white matter tract connecting frontal and temporal language regions, which is usually implicated as the main transfer route used in processing linguistic information by the brain. Abnormalities in the arcuate have been reported in young children with ASC, mostly in low-functioning or non-verbal individuals, but little is known regarding the structural properties of the arcuate in adults with ASC or, in particular, in individuals with ASC who have intact language, such as those with high-functioning autism or Asperger syndrome. We used probabilistic tractography of diffusion-weighted imaging to isolate and scrutinize the arcuate in a mixed-gender sample of 18 high-functioning adults with ASC (17 Asperger syndrome) and 14 age- and IQ-matched typically developing controls. Arcuate volume was significantly reduced bilaterally with clearest differences in the right hemisphere. This finding remained significant in an analysis of all male participants alone. Volumetric reduction in the arcuate was significantly correlated with the severity of autistic symptoms as measured by the Autism-Spectrum Quotient. These data reveal that structural differences are present even in high-functioning adults with ASC, who presented with no clinically manifest language deficits and had no reported developmental language delay. Arcuate structural integrity may be useful as an index of ASC severity and thus as a predictor and biomarker for ASC. Implications for future research are discussed.

Kowalik B.,Freie University BerlinBerlin | Schubert T.,University of Heidelberg | Wada H.,Ritsumeikan University | Tanaka M.,University of Heidelberg | And 3 more authors.
Journal of Physical Chemistry B | Year: 2015

The phase behavior of membrane lipids plays an important role in the formation of functional domains in biological membranes and crucially affects molecular transport through lipid layers, for instance, in the skin. We investigate the thermotropic chain melting transition from the ordered Lβ phase to the disordered Lα phase in membranes composed of dipalmitoylphosphatidylcholine (DPPC) by atomistic molecular dynamics simulations in which the membranes are subject to variable heating rates. We find that the transition is initiated by a localized nucleus and followed by the propagation of the phase boundary. A two-state kinetic rate model allows characterizing the transition state in terms of thermodynamic quantities such as transition state enthalpy and entropy. The extrapolated equilibrium melting temperature increases with reduced membrane hydration and thus in tendency reproduces the experimentally observed dependence on dehydrating osmotic stress. © 2015 American Chemical Society.

Bergmann J.,Freie University BerlinBerlin | Bergmann J.,Berlin Brandenburg Institute of Advanced Biodiversity Research BBIB Berlin | Verbruggen E.,University of Antwerp | Heinze J.,Berlin Brandenburg Institute of Advanced Biodiversity Research BBIB Berlin | And 8 more authors.
Ecology and Evolution | Year: 2016

Plant–soil feedback (PSF) can influence plant community structure via changes in the soil microbiome. However, how these feedbacks depend on the soil environment remains poorly understood. We hypothesized that disintegrating a naturally aggregated soil may influence the outcome of PSF by affecting microbial communities. Furthermore, we expected plants to differentially interact with soil structure and the microbial communities due to varying root morphology. We carried out a feedback experiment with nine plant species (five forbs and four grasses) where the “training phase” consisted of aggregated versus disintegrated soil. In the feedback phase, a uniform soil was inoculated in a fully factorial design with soil washings from conspecific- versus heterospecific-trained soil that had been either disintegrated or aggregated. This way, the effects of prior soil structure on plant performance in terms of biomass production and allocation were examined. In the training phase, soil structure did not affect plant biomass. But on disintegrated soil, plants with lower specific root length (SRL) allocated more biomass aboveground. PSF in the feedback phase was negative overall. With training on disintegrated soil, conspecific feedback was positively correlated with SRL and significantly differed between grasses and forbs. Plants with higher SRL were likely able to easily explore the disintegrated soil with smaller pores, while plants with lower SRL invested in belowground biomass for soil exploration and seemed to be more susceptible to fungal pathogens. This suggests that plants with low SRL could be more limited by PSF on disintegrated soils of early successional stages. This study is the first to examine the influence of soil structure on PSF. Our results suggest that soil structure determines the outcome of PSF mediated by SRL. We recommend to further explore the effects of soil structure and propose to include root performance when working with PSF. © 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

LaRock C.N.,University of California at San Diego | Dohrmann S.,University of California at San Diego | Todd J.,University of California at San Diego | Corriden R.,University of California at San Diego | And 9 more authors.
Cell Host and Microbe | Year: 2015

Summary The antimicrobial peptide LL-37 is generated upon proteolytic cleavage of cathelicidin and limits invading pathogens by directly targeting microbial membranes as well as stimulating innate immune cell function. However, some microbes evade LL-37-mediated defense. Notably, group A Streptococcus (GAS) strains belonging to the hypervirulent M1T1 serogroup are more resistant to human LL-37 than other GAS serogroups. We show that the GAS surface-associated M1 protein sequesters and neutralizes LL-37 antimicrobial activity through its N-terminal domain. M1 protein also binds the cathelicidin precursor hCAP-18, preventing its proteolytic maturation into antimicrobial forms. Exogenous M1 protein rescues M1-deficient GAS from killing by neutrophils and within neutrophil extracellular traps and neutralizes LL-37 chemotactic properties. M1 also binds murine cathelicidin, and its virulence contribution in a murine model of necrotizing skin infection is largely driven by its ability to neutralize this host defense peptide. Thus, cathelicidin resistance is essential for the pathogenesis of hyperinvasive M1T1 GAS. © 2015 Elsevier Inc.

Richter C.,Humboldt University of Berlin | Schneider C.,Freie University BerlinBerlin | Quick M.T.,Humboldt University of Berlin | Volz P.,Freie University BerlinBerlin | And 5 more authors.
Physical Chemistry Chemical Physics | Year: 2015

Although seminaphtorhodafluor (SNARF) dyes are already widely used to measure pH in cells and at biofilms, their synthesis has low yield and results in an unspecific position of a carboxy-group. The separation of 5′- and 6′-carboxy-SNARF reveals a pKa difference of 0.15, calling into question pH measurements with the (commercially available) mixture. Here we replace the bulky external dicarboxyphenyl ring with a propionate group and evaluate the spectral properties of the new derivative. Proceeding to the ethyl-iodoacetamide, covalent linkage to cysteine protein sites is achieved efficiently as shown with a cyanobacterial phytochrome, extending the scarce application of SNARF in bio-labelling in the current literature. Application in fluorescence lifetime imaging is demonstrated both with the lifetime-based and ratiometric-yield method. © the Owner Societies.

PubMed | Aix - Marseille University, Max Planck Institute for Human Development, Freie University BerlinBerlin and University of Salzburg
Type: | Journal: Frontiers in psychology | Year: 2016

Reading is one of the most popular leisure activities and it is routinely performed by most individuals even in old age. Successful reading enables older people to master and actively participate in everyday life and maintain functional independence. Yet, reading comprises a multitude of subprocesses and it is undoubtedly one of the most complex accomplishments of the human brain. Not surprisingly, findings of age-related effects on word recognition and reading have been partly contradictory and are often confined to only one of four central reading subprocesses, i.e., sublexical, orthographic, phonological and lexico-semantic processing. The aim of the present study was therefore to systematically investigate the impact of age on each of these subprocesses. A total of 1,807 participants (young,

PubMed | Free University of Berlin, University of Wuppertal and Freie University BerlinBerlin
Type: | Journal: Frontiers in psychology | Year: 2016

Perhaps the most ubiquitous and basic affective decision of daily life is deciding whether we like or dislike something/somebody, or, in terms of psychological emotion theories, whether the object/subject has positive or negative

Loading Freie University BerlinBerlin collaborators
Loading Freie University BerlinBerlin collaborators