Time filter

Source Type

Iowa City, IA, United States

Brown C.O.,Free Radical and Radiation Biology Program | Schibler J.,Free Radical and Radiation Biology Program | Fitzgerald M.P.,Free Radical and Radiation Biology Program | Singh N.,Free Radical and Radiation Biology Program | And 3 more authors.
Leukemia Research | Year: 2013

This study evaluates the role of scavenger receptor class A member 3 (SCARA3) in multiple myeloma (MM). SCARA3 expression was induced upon treatment with oxidative stressors (ionizing radiation and chemotherapeutic drugs). An epigenetic inactivation of SCARA3 was noted in MM.1S myeloma cells. Myeloma cell killing by dexamethasone and bortezomib was inhibited by up-regulation of SCARA3 while SCARA3 knockdown sensitized myeloma cells to the drugs. Clinical samples showed an inverse correlation between SCARA3 gene expression, myeloma progression, and favorable clinical prognosis. In MM, SCARA3 protects against oxidative stress-induced cell killing and can serve as predictor of MM progression and therapeutic response. © 2013.

Wagner B.A.,Free Radical and Radiation Biology Program | Martin S.M.,University of Iowa | Knudson C.M.,University of Iowa | Blendowski R.,University of Iowa | And 9 more authors.
Transfusion | Year: 2015

BACKGROUND: The transfusion of red blood cells (RBCs) with maximum therapeutic efficacy is a major goal in transfusion medicine. One of the criteria used in determining stored RBC quality is end-of-storage hemolysis. Between donors, a wide range of hemolysis is observed under identical storage conditions. Here, a potential mechanism for this wide range is investigated. We hypothesize that the magnitude of hemolysis is a heritable trait. Also, we investigated correlations between hemolysis and RBC metabolites; this will establish pathways influencing hemolysis as future targets for genetic analysis. STUDY DESIGN AND METHODS: Units of RBCs from identical and nonidentical twins were collected and stored under standard conditions for 56 days. Hemolysis, adenosine triphosphate (ATP), and total glutathione (tGSH) were measured throughout storage. Nontargeted metabolic analyses were performed on RBCs that had been stored for 28 days. Heritability was determined by comparing values between identical and nonidentical twins. RESULTS: Hemolysis was found to be heritable (mean > 45%) throughout the storage period. Potential correlations were observed between hemolysis and metabolites from the purine metabolism, lysolipid, and glycolysis pathways. These also exhibited heritability (>20%). No correlation was found with ATP or tGSH. CONCLUSION: The susceptibility of RBCs to lysis during storage is partly determined by inheritance. We have also uncovered several pathways that are candidate targets for future genomewide association studies. These findings will aid in the design of better storage solutions and the development of donor screening tools that minimize hemolysis during storage. © 2015 AABB.

Salem K.,Free Radical and Radiation Biology Program | McCormick M.L.,Free Radical and Radiation Biology Program | Wendlandt E.,University of Iowa | Zhan F.,University of Iowa | Goel A.,Free Radical and Radiation Biology Program
Redox Biology | Year: 2015

Multiple myeloma (MM) is an incurable B-cell malignancy. The proteasome inhibitor bortezomib (BTZ) is a frontline MM drug; however, intrinsic or acquired resistance to BTZ remains a clinical hurdle. As BTZ induces oxidative stress in MM cells, we queried if altered redox homeostasis promotes BTZ resistance. In primary human MM samples, increased gene expression of copper-zinc superoxide dismutase (CuZnSOD or SOD1) correlated with cancer progression, high-risk disease, and adverse overall and event-free survival outcomes. As an in vitro model, human MM cell lines (MM.1S, 8226, U266) and the BTZ-resistant (BR) lines (MM.1SBR, 8226BR) were utilized to determine the role of antioxidants in intrinsic or acquired BTZ-resistance. An up-regulation of CuZnSOD, glutathione peroxidase-1 (GPx-1), and glutathione (GSH) were associated with BTZ resistance and attenuated prooxidant production by BTZ. Enforced overexpression of SOD1 induced BTZ resistance and pharmacological inhibition of CuZnSOD with disulfiram (DSF) augmented BTZ cytotoxicity in both BTZ-sensitive and BTZ-resistant cell lines. Our data validates CuZnSOD as a novel therapeutic target in MM. We propose DSF as an adjuvant to BTZ in MM that is expected to overcome intrinsic and acquired BTZ resistance as well as augment BTZ cytotoxicity.

Discover hidden collaborations