Time filter

Source Type

Grant
Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENERGY.2009.3.3.1 | Award Amount: 17.46M | Year: 2010

Economic and sustainable production of fuels, chemicals and materials from biomass requires capture of the maximum energy and monetary value from sustainable feedstock. SUPRA-BIO achieves this by focussing on innovative research and development of critical unit operations, by using process intensification to match economic production to the scale of available feedstock and by process integration that provides energy from process waste, optimises utilities to minimise environmental impact and maximises value from the product mix. A technology toolbox for conversion and separation operations is developed that adapts to various scenarios of product mix and feedstock. These are contextualized by full life cycle and economic analysis of potential biorefinery schemes. Based on lignocellulose, microbial/organic waste or microalgae feedstock, innovation and intensification are used to improve the economics and carbon efficiency of fractionation, separation, bio and thermochemical conversions to produce biofuels, intermediates and high value products. Strain selection, genetic manipulation, molecular design and nanocatalysis are used to improve productivity and selectivity; reactor design, intensification and utilities integration for economics. Fermentation to 2,3 butanediol is demonstrated. Mono and multiculture processes are researched for high value products and feedstock streams. Separation is developed for omega oils and specific lignochemicals. Nano and biocatalytic processes are developed for biofuels and bioactive molecules. Integration into potential biorefinery schemes is explored in laboratory pilots of integrated reactors, by piloting on sidestreams, by exchanging separated fractions between partners and by process evaluations. The project includes all the scientific, engineering and industrial skills required to produce the step changes required for biorefineries to impact significantly on realising the aims of the European Strategic Energy Technology Plan


Grant
Agency: Cordis | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2010.1.5 | Award Amount: 9.31M | Year: 2011

For truck applications the increasing demand for electrical power when the vehicle stands still has lead to an increasing need for an on-board electric power generator which operates with high efficiency and very low emissions. A fuel cell based auxiliary power unit (APU), with a diesel fuel processor is regarded as one of the most interesting options since it combines high efficiency, low emissions and the use of the same fuel as the main engine. The overall objectives of FCGEN wer to develop and demonstrate a proof-of-concept complete fuel cell auxiliary power unit in a real application, onboard a truck. However, the vehicle demonstration objective was changed to laboratory demonstration as the project partner, CRF, who was responsible for the vehicle demonstration work package and providing the demonstration truck has left the project after 24 months and it was not possible for the FCGEN consortium to find a suitable replacement for CRF. The APU system consisting of a low-temperature PEM fuel cell, a diesel fuel processor and necessary balance of plant components will be designed to meet automotive requirements regarding e.g. size, mechanical tolerances, durability etc. High targets are set for energy efficiency and therefore this will significantly lead to emissions reductions and greener transport solutions in line with EU targets. A key point in the project is the development of a fuel processing system that can handle logistic fuels. A fuel processor consisting of autothermal reformer, desulphurization unit, water-gas-shift reactor, reactor for the preferential oxidation of CO, will be developed. The fuel processor will be developed for and tested on standard available low sulphur diesel fuel both for the European and US fuel qualities. Another key point is the development of an efficient and reliable control system for the APU, systems, including both hardware and software modules. In the final demonstration, the fuel cell based APU will be tested in laboratory environment as the first step in a defined plan towards Vehicle demonstration.


BIO-GO-For-Production is a Large Scale Collaborative Research Project that aims to achieve a step change in the application of nanocatalysis to sustainable energy production through an integrated, coherent and holistic approach utilizing novel heterogeneous nanoparticulate catalysts in fuel syntheses. BIO-GO researches and develops advanced nanocatalysts, which are allied with advanced reactor concepts to realise modular, highly efficient, integrated processes for the production of fuels from renewable bio-oils and biogas. Principal objectives are to develop new designs, preparation routes and methods of coating nanocatalysts on innovative micro-structured reactor designs, enabling compact, integrated catalytic reactor systems that exploit fully the special properties of nanocatalysts to improve process efficiency through intensification. An important aim is to reduce the dependence on precious metals and rare earths. Catalyst development is underpinned by modelling, kinetic and in-situ studies, and is validated by extended laboratory runs of biogas and bio-oil reforming, methanol synthesis and gasoline production to benchmark performance against current commercial catalysts. The 4-year project culminates in two verification steps: (a) a 6 month continuous pilot scale catalyst production run to demonstrate scaled up manufacturing potential for fast industrialisation (b) the integration at miniplant scale of the complete integrated process to gasoline production starting from bio-oil and bio-gas feedstocks. A cost evaluation will be carried out on the catalyst production while LCA will be undertaken to analyse environmental impacts across the whole chain. BIO-GO brings together a world class multi-disciplinary team from 15 organisations to carry out the ambitious project, the results of which will have substantial strategic, economic and environmental impacts on the EU petrochemicals industry and on the increasing use of renewable feedstock for energy.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: NMP.2012.3.0-1 | Award Amount: 5.48M | Year: 2012

The proposed project, MAPSYN, aims to bring selected innovative energy efficient chemical reaction processes, assisted with novel microwave, ultrasonic and plasma systems, up to the manufacturing scale. A pragmatic approach of using these selected alternative energy sources for end user selected reactions, will be individually studied for both microreactor and flow reactor systems (i.e. continuous not batch processes), to address specific business drivers such as energy reduction or increased production. The cost and energy of production needs to be kept as lean as possible with quality, reproducibility and sustainability being at the centre of the novel MAPSYN process concepts. Fine and commodity chemical syntheses for the chemical industry can be energy, time and design skill intensive and may produce lower reaction yields than desired. These valuable chemicals are vital to the consumer as they are used by the personal care, pharmaceutical, household and agricultural industries. End user selected reactions include selective hydrogenations and nitrogen fixation reactions.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: NMP-2009-3.2-1 | Award Amount: 10.03M | Year: 2010

POLYCAT provides an integrated, coherent and holistic approach utilizing novel polymer based nanoparticulate catalysts in pharmaceutical, crop protection and vitamin syntheses in conjunction with the enabling functions of micro process technology and green solvents such as water or ethyl lactate. This provides a discipline bridging approach between fine chemistry, catalysis and engineering. This will lead to the replacement of a number of chemical or microbiological reaction steps in fine chemical syntheses by catalytic ones using more active, selective and stable nanoparticulate catalysts. In addition, POLYCAT will lead to the development of novel chiral modifiers immobilized on the polymeric supports. Micro process technology provides testing under almost ideal processing conditions, with much improved heat management, with improved costing, at high data validity, at high process confidence, and with high certainty for scale-out. The industrial applicability is demonstrated by scale-out of the industrial demonstration reactions to the pilot scale. A multi-purpose, container-type plant infrastructure will integrate individual reaction and separation modules in block format, standardised basic logistics, process control, safety installations, and on-line analytics. As guidance before (ex-ante) and during the whole development, holistic life cycle (LCA) and cost analyses will pave directions towards competitiveness and sustainability. The POLYCAT technologies have potential to reduce the environmental impact by 20% up to orders of magnitude: e.g. reduction of green house gas emissions, acids (SO2-Eq.), nutrients (NOx-Eq.), toxic substances (1,4-DCB Eq.) and finite abiotic resources (antimony eq.). With (enantio)selectivity increases up to 25%, solvent reductions of 30-100%, and products cost decreases of about 10%, a midterm impact of 30-110 Mio Euro and longterm impact of 100-560 Mio Euro result.


The goal of MultiSENSE is the development of a detection and identification system for biological pathogens, which shall include both the sample preparation stage, during which target molecules are extracted directly and in parallel the ensuing nucleic-acid-based and/or immunological detection and identification steps, in order to build an integrated sample in, result out system. Disruptive technologies (e.g., advanced sensor technologies like optoelectronic sensors or electrochemical sensors), lab-on-chip technology, and innovative instrumentation are key to reaching the presently unrealized goal of identifying pathogens in parallel on both the molecular biology level via PCR and the immunological route. The chosen technologies offer several advantages: on the one hand, a small, portable, and easy-to-use device can be realized due to miniaturization; on the other, the so-called lab-on-chip technology enables operation outside of lab settings, meaning that the complete analysis including sample preparation, extraction of target molecules, etc. will be carried out in a small device the size of a microtiter plate with all necessary reagents on board. This includes dry reagent storage of lysis reagents, master mixes for the PCR, antibodies, and liquid storage of buffers. Furthermore, it will be imperative that an on-chip waste storage be included in order to eliminate contamination risk. The overall target is a sample in, result out-type handling procedure. A reduction of processing times is a further advantage owed to miniaturization and the combination of all biological processes in a small disposable chip instead of different instruments. Finally, suitably equipped biological laboratories are no longer necessary to run PCR and immunological assays as portable systems may instead be used to analyze suspicious samples directly at the point of interest. Sensor technology will be another enabling technology we will apply.


Grant
Agency: Cordis | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2012.4.2;SP1-JTI-FCH.2012.4.4 | Award Amount: 3.44M | Year: 2013

The complexity of the balance of plant of a fuel cell-fuel processor unit challenges the design/development/demonstration of compact and user friendly fuel cell power systems for portable applications. An Internal Reforming Methanol Fuel Cell (IRMFC) stack poses a highly potential technological challenge for High Temperature Polymer Electrolyte Membrane Fuel Cells (HT-PEMFCs) in portable applications. It aims at opening new scientific and engineering prospects, which may allow easier market penetration of the fuel cells. The core of innovation of IRMFC is the incorporation of a methanol reforming catalyst in the anode compartment or in between the bipolar plates of a High Temperature Polymer Electrolyte Membrane Fuel Cell (HT-PEMFC). In order to obtain an economically technologically viable solution, low-cost materials with certain functional specifications within 200-220oC (electrolytes, catalysts and bipolar plates) and production techniques, with easy maintenance and high durability will be employed. Taking advantage of the innovative outcomes of the ending FCH-JU IRAFC 245202 project, the functionality of MeOH-fuelled integrated 100 W system will be demonstrated. IRMFC partnership brings together specialists in catalysis (FORTH, UMCS, ZBT, IMM), HT polymer electrolytes (UPAT, ADVENT, FORTH), as well as the technological know-how to design, construct and test balance-of-plant components and HT-PEMFC stacks (IMM, ZBT, ENERFUEL, JRC-IET, ADVENT). Special role is adapted throughout the project for end-user/system integrators (ENERFUEL, ARPEDON) with respect to emerging portable applications. In particular Advents joint development with HT PEM dedicated and recognized industrial partners like Enerfuel (USA) gives the ability to adopt and integrate the advanced technological know-how of the two companies toward the manufacture of a product that will have all assets to penetrate fuel cell early market business.


Ritzi-Lehnert M.,Fraunhofer Institute of Microtechnology Mainz
Expert Review of Molecular Diagnostics | Year: 2012

Diagnosis of infectious diseases in primary care is predominantly based on medical history and physical examination, as conventional laboratory investigations are often associated with delays that are unacceptable in medical practice. Point-of-care testing, and especially lab-on-a-chip (LoC) systems, are expected to result in a considerable reduction in associated healthcare costs and lead to fast, but appropriate and effective, personalized therapy. Although appropriate sample preparation is essential for final detection, most microfluidic-based approaches start from samples prepared by conventional laboratory procedures, therefore continuing to restrict the use of these systems to a laboratory setting. The lack of integrated sample preparation, especially for sample volumes in the milliliter range, is a major drawback of existing LoC systems. LoC systems that start with real samples and perform a full protocol from sample to result are still rare. In this article, the most recent advances in on-chip sample preparation are reviewed for microfluidic-based diagnosis of infectious diseases. © 2012 Expert Reviews Ltd.


Kolb G.,Fraunhofer Institute of Microtechnology Mainz
Chemical Engineering and Processing: Process Intensification | Year: 2013

The current paper provides an overview of recent and past research activities in the field of microreactors for energy related topics. The main research efforts in this field are currently focussing on fuel processing as hydrogen source, mostly for distributed consumption through fuel cells. Catalyst development, reactor design and testing for reforming and removal of carbon monoxide through water-gas shift, preferential oxidation, selective methanation and membrane separation are therefore under investigation. An increasing number of integrated complete micro fuel processors has been developed for a large variety of fuels, assisted by static and dynamic simulation of these systems. The synthesis of liquid fuels is another emerging topic, namely Fischer-Tropsch synthesis, methanol and dimethylether production from synthesis gas and biodiesel production. © 2012 Elsevier B.V.


Grant
Agency: Cordis | Branch: FP7 | Program: ERC-SG | Phase: ERC-SG-PE7 | Award Amount: 1.43M | Year: 2011

In PoCyton, a revolutionary concept for the detection zone of a flow cytometer is proposed. Flow cytometers are fluorescence-based cell counters and as such are indispensable instruments in clinical and biomedical research. Over the last four decades, despite gradual technical improvements in the constituent components, the detection principle has virtually remained unchanged. Fluorescently tagged cells in suspension are made to flow through a narrow focal excitation area and then detected via the fluorescent pulse emitted by them. The narrow focus imposes restrictions on the flow rate and, as a consequence, on feasible sample volumes. Moreover, the alignment of cell-flow, excitation, and detection requires extreme precision. To this end, expensive, bulky components have to be used, preventing substantial miniaturization of flow cytometry. In PoCyton, the detection zone will be enlarged and superimposed with a pseudo-random pattern leading to a temporally extended, distinctly coded signal recorded for each fluorescing cell. In analogy to spread-signal methods, each cell will be reconstructed from the coded signal by correlation techniques. While the precision in spatial cell discrimination outperforms that of conventional flow cytometry only slightly, the signal-to-noise ratio is enhanced significantly, resulting in a notable improvement in sensitivity. In addition, the enlargement of the detection zone dramatically mitigates alignment issues. In PoCyton, various implementations and extensions towards multi-colour flow cytometry will be studied experimentally to demonstrate their high sample-throughput and miniaturization (lab-on-a-chip) potential. Ultimately, a wider range of flow cytometry methods will thus be made available for routine use in clinical laboratories and medical point-of-care diagnosis, e.g., for cancer treatment. PoCyton is a multi-disciplinary project primarily involving expertise in optics, microfluidics, micro-systems, and signal processing.

Loading Fraunhofer Institute of Microtechnology Mainz collaborators
Loading Fraunhofer Institute of Microtechnology Mainz collaborators