Fraunhofer Institute for Manufacturing Engineering and Automation

Stuttgart, Germany

Fraunhofer Institute for Manufacturing Engineering and Automation

Stuttgart, Germany
SEARCH FILTERS
Time filter
Source Type

Soutschek M.,Fraunhofer Institute for Manufacturing Engineering and Automation
ECCM 2016 - Proceeding of the 17th European Conference on Composite Materials | Year: 2016

In this article, measurement methods and an optical test device for determining the quality of machined components are introduced. Until now, catalogues of limiting samples are commonly used for this and visual quality assessments are carried out without technical aid, so they are not reproducible. In the article, an optical measurement procedure is presented. This procedure evaluates special machining errors on drill holes and edges that can occur during the manufacture of fiber components. The measuring method was implemented in terms of a handset with the name AICC (Automatic Inspection of Cut Carbon). With the help of AICC, the subjective and error-prone assessment of a worker is avoided and reproducible measurement results are created. Further, there is the possibility to file all measurement results in a database, what allows to draw conclusions about process flows and stability. © 2016, European Conference on Composite Materials, ECCM. All rights reserved.


Pott A.,Fraunhofer Institute for Manufacturing Engineering and Automation
Mechanisms and Machine Science | Year: 2018

In this paper, a method is proposed to compute the so-called cable span, i.e. the space occupied by the cables when the robot is moving within its workspace. As the cables are attached to a mostly fixed point on the robot frame, the shape of the cable span is a generalized cone. We present an efficient method polar sorting to compute the surface of this cone. Furthermore, the found geometry of the cone is employed in the design of the cable anchor points in order to dimension its deflection capabilities and to compute a suitable orientation for the installation of the mechanical unit. © Springer International Publishing AG 2018.


News Article | December 3, 2015
Site: www.greencarcongress.com

Researchers at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart have developed a prototype intelligent battery cell that they say could lower the cost of automotive battery packs and extend the range. Each battery cell has its own built-in microcontroller that records relevant physical parameters, such as the temperature and the state of charge of the cell—i.e., each cell knows its own condition. The cells communicate via the existing power wiring between battery cells; they can also communicate with other devices, such as the on-board controller, which uses the data from the cells to calculate the state of charge. The potential benefits of this come in to play when considering the current state of pack assembly. So far, these have been monolithic blocks in which the individual battery cells as well as the necessary supporting technology have been housed. All individual cells should theoretically have the same energy capacity. In practice, though, this is somewhat different: due to production reasons, capacities vary. This is problematic, since the cells are connected in series. The entire battery is therefore only as strong as its weakest cell. If the charge in this cell is depleted, the remaining energy in the other battery cells does not help—the car has to be recharged. For that reason, manufacturers presort and install cells of a similar capacity into a battery. Since some cells are sorted out as a result of this process, this pushes up the price of the battery packs. Another shortcoming is that when a cell is defective, the vehicle stops functioning. With the new Fraunhofer approach, if a cell is empty, but the others still have energy stored, the car does not have to stop like it did before. Rather, the empty battery cell simply decouples from the cluster, acting like a current by-pass. The others continue to deliver energy. Since one cell with lower capacity hardly affects the overall range of a car, the manufacturers would no longer need to pre-sort. This could significantly reduce costs. In addition, the capacities of the cells adapt to each other over time—the ones that can store less energy are switched off earlier. The cells therefore run longer and, as a result, faster: their capacity decreases. If a battery cell malfunctions, it is not necessary to bring the vehicle to the workshop. Since the car has more than one hundred cells, it does not depend on any individual one. If the driver decides in favor of a repair, it is sufficient to merely replace the single cell instead of the entire battery. The researchers have already developed a prototype of the battery cell. The challenge is now to miniaturize the electronics and embed them into cells. “We want it to cost less than a euro,” Pfeiffer says. 3Ccar. Part of the development process is being conducted in the EU project “3Ccar”. 3Ccar is a European collaborative project funded by the ECSEL (Electronic Components and Systems for European Leadership) Joint Undertaking. Launched in June 2015, 3Ccar aims to address the vehicle control architecture and its subsystems in order to achieve the next level of efficiency. 3Ccar is working on advanced system designs with high local intelligence (computing power, sensing abilities, modularity) and extended network bandwidth to enable smart system partitioning. The goal is a reduction in the system complexity of EVs, with positive effects on costs as well as maintenance, monitoring and update functionalities. The total project consists of 10 supply chains—one of which is smart battery cells, led by Fraunhofer—developing the major project breakthroughs, structured in 8 work packages generating more than 100 deliverables with around a €54-million research and innovation budget distributed over 3 years.


News Article | March 1, 2017
Site: www.cemag.us

Imagine you’ve had a hectic day and then, to cap it all, you find that the battery of your electric vehicle is virtually empty. This means you’ll have to take a long break while it charges fully. It’s a completely different story with capacitors, which charge in seconds. However, they have a different drawback: they store very little energy. In the FastStorageBW II project, funded by the Baden-Württemberg Ministry of Economic Affairs, researchers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, together with colleagues from the battery manufacturer VARTA AG and other partners, are developing a powerful hybrid storage system that combines the advantages of lithium-ion batteries and supercapacitors. “The PowerCaps have a specific capacity as high as lead batteries, a long life of ten to twelve years, and charge in a matter of seconds like a supercapacitor,” explains Joachim Montnacher, Head of the Energy business unit at Fraunhofer IPA. What’s more, PowerCaps can operate at temperatures of up to 85 degrees Celsius. They withstand a hundred times more charge cycles than conventional battery systems and retain their charge over several weeks without any significant losses due to self-discharge. The Fraunhofer IPA researchers’ main concern is with manufacturing: to set up new battery production, it is essential to implement the relevant process knowledge in the best possible way. After all, it costs millions of euros to build a complete manufacturing unit. “We make it possible for battery manufacturers to install an intermediate step — a small-scale production of sorts — between laboratory production and large-scale production,” says Montnacher. “This way, we can create ideal conditions for large-scale production, optimize processes and ensure production follows the principles of Industrie 4.0 from the outset. Because in the end, that will give companies a competitive advantage.” Another benefit is that this cuts the time it takes to ramp up production by more than 50 percent. For this innovative small-scale production setup, researchers cleverly combine certain production sequences. However, not all systems are connected to each other — at least, as far as the hardware is concerned. More often, it is an employee that carries the batches from one machine to the next. Ultimately, it is about developing a comprehensive understanding of the process, not about producing the greatest number of products in the shortest amount of time. For example, this means clarifying questions such as if the desired quality can be reproduced. The systems are designed as flexibly as possible so that they can be used for different production variations. As far as software is concerned, the systems are thoroughly connected. Like process clusters, they are also equipped with numerous sensors, which show the clusters what data to capture for each of the process steps. They communicate with one another and store the results in a cloud. Researchers and entrepreneurs can then use this data to quickly analyze which factors influence the quality of the product — does it have Industrie 4.0 capability? Were the right sensors selected? Do they deliver the desired data? Where are adjustments required? Fraunhofer IPA is also applying its expertise beyond the area of production technology: The scientists are developing business models for the marketing of battery cells, they are analyzing resource availability, and they are optimizing the subsequent recycling of PowerCaps.


Imagine you've had a hectic day and then, to cap it all, you find that the battery of your electric vehicle is virtually empty. This means you'll have to take a long break while it charges fully. It's a completely different story with capacitors, which charge in seconds. However, they have a different drawback: they store very little energy. In the FastStorageBW II project, funded by the Baden-Württemberg Ministry of Economic Affairs, researchers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, together with colleagues from the battery manufacturer VARTA AG and other partners, are developing a powerful hybrid storage system that combines the advantages of lithium-ion batteries and supercapacitors. "The PowerCaps have a specific capacity as high as lead batteries, a long life of ten to twelve years, and charge in a matter of seconds like a supercapacitor," explains Joachim Montnacher, Head of the Energy business unit at Fraunhofer IPA. What's more, PowerCaps can operate at temperatures of up to 85 degree Celsius. They withstand a hundred times more charge cycles than conventional battery systems and retain their charge over several weeks without any significant losses due to self-discharge. The Fraunhofer IPA researchers' main concern is with manufacturing: to set up new battery production, it is essential to implement the relevant process knowledge in the best possible way. After all, it costs millions of euros to build a complete manufacturing unit. "We make it possible for battery manufacturers to install an intermediate step – a small-scale production of sorts – between laboratory production and large-scale production," says Montnacher. "This way, we can create ideal conditions for large-scale production, optimize processes and ensure production follows the principles of Industrie 4.0 from the outset. Because in the end, that will give companies a competitive advantage." Another benefit is that this cuts the time it takes to ramp up production by more than 50 percent. For this innovative small-scale production setup, researchers cleverly combine certain production sequences. However, not all systems are connected to each other – at least, as far as the hardware is concerned. More often, it is an employee that carries the batches from one machine to the next. Ultimately, it is about developing a comprehensive understanding of the process, not about producing the greatest number of products in the shortest amount of time. For example, this means clarifying questions such as if the desired quality can be reproduced. The systems are designed as flexibly as possible so that they can be used for different production variations. As far as software is concerned, the systems are thoroughly connected. Like process clusters, they are also equipped with numerous sensors, which show the clusters what data to capture for each of the process steps. They communicate with one another and store the results in a cloud. Researchers and entrepreneurs can then use this data to quickly analyze which factors influence the quality of the product – Does it have Industrie 4.0 capability? Were the right sensors selected? Do they deliver the desired data? Where are adjustments required? Fraunhofer IPA is also applying its expertise beyond the area of production technology: The scientists are developing business models for the marketing of battery cells, they are analyzing resource availability, and they are optimizing the subsequent recycling of PowerCaps.


News Article | December 1, 2015
Site: phys.org

The core of electric cars are their batteries. So far, these have been monolithic blocks in which the individual battery cells as well as the necessary technology have been housed. All individual cells should theoretically be able to save the same amount of energy. In practice, though, this is somewhat different: due to production reasons, their capacities vary. This is problematic, since the cells are connected in series. The entire battery is therefore only as strong as its weakest cell. If this cell is "empty", the remaining energy in the other battery cells does not help – the car has to be recharged. For that reason, manufacturers presort and install cells of a similar capacity into a battery. Since some cells are sorted out as a result of this process, and this pushes the price of the batteries up. Another shortcoming is that when a cell is defective, the vehicle stops functioning. That means that the entire energy storage device has to be replaced. Independent battery cells communicate with each other Researchers at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart have now created an alternative. "Our modular battery system solves these problems," says Dr. Kai Pfeiffer, Group Manager at the IPA. The trick: each battery cell has its own built-in microcontroller that records relevant physical parameters, such as the temperature and the state of charge of the cell. As a result, each cell knows what condition it is in. The cells "talk" to each other via the existing power wiring between battery cells. This is known as power-line communication. They can also communicate with other devices, such as the on-board computer, which uses the data from the cells to calculate how much remaining energy the entire battery still has, the so called state of charge. If a cell is empty, but the others still have energy stored, the car does not have to stop, like it did before. Rather, the empty battery cell simply decouples from the cluster, acting like a current by-pass. The others continue to deliver energy. "Depending on the cell quality, we can therefore increase the range by at least four percent," explains Pfeiffer." Over time, this effect is amplified: in the case of an old battery, and if the empty cells are replaced, it is conceivable that a range up to ten percent higher can be achieved". Since one cell with lower capacity hardly affects the overall range of a car, the manufacturers no longer need to pre-sort it. This should significantly reduce costs. In addition, the capacities of the cells adapt to each other over time. This is because the ones that can store less energy are switched off earlier. The cells therefore run longer and, as a result, faster: their capacity decreases. And if a battery cell malfunctions, it is not necessary to bring the vehicle to the workshop. Since the car has more than one hundred cells, it does not depend on any individual one. And if the driver decides in favor of a repair, it is sufficient to merely replace the single cell instead of the entire battery. The researchers have already developed a prototype of the battery cell. The challenge is now to miniaturize the electronics and embed them into cells. "We want it to cost less than a euro," Pfeiffer says. Part of the development process is being conducted in the EU project "3Ccar." Explore further: Lithium hoarding behind failure of promising new battery


News Article | December 15, 2015
Site: cleantechnica.com

A new prototype “intelligent battery cell” has been developed by researchers at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart that could lead to electric vehicle battery pack costs being slashed notably. In addition to potential cost cuts, the new prototype could also lead to battery packs with greater capacity (potential range), according to those involved in the research. The new prototype battery cells feature built-in micro-controllers that record various physical parameters — temperature, state of charge, etc — and use this information to “communicate” with the other cells (or controllers), thereby allowing for some manufacturing options that didn’t exist previously. The potential benefits of this come in to play when considering the current state of pack assembly. So far, these have been monolithic blocks in which the individual battery cells as well as the necessary supporting technology have been housed All individual cells should theoretically have the same energy capacity. In practice, though, this is somewhat different: due to production reasons, capacities vary. This is problematic, since the cells are connected in series. The entire battery is therefore only as strong as its weakest cell. If the charge in this cell is depleted, the remaining energy in the other battery cells does not help — the car has to be recharged. For that reason, manufacturers presort and install cells of a similar capacity into a battery. Since some cells are sorted out as a result of this process, this pushes up the price of the battery packs. Another shortcoming is that when a cell is defective, the vehicle stops functioning. The new prototype, though, allows for a setup whereby the presence of empty cells doesn’t require the car to be stopped — so long as other cells still possess a charge, that is. The empty cell simply “decouples” from the others (similar to a current by-pass). The Group Manager at Fraunhofer IPA, Dr Kai Pfeiffer, commented: “Depending on the cell quality, we can therefore increase the range by at least four percent. Over time, this effect is amplified: in the case of an old battery, and if the empty cells are replaced, it is conceivable that a range up to ten percent higher can be achieved.” Fraunhofer ISE was a 2014 Zayed Future Energy Prize winner.    Get CleanTechnica’s 1st (completely free) electric car report → “Electric Cars: What Early Adopters & First Followers Want.”   Come attend CleanTechnica’s 1st “Cleantech Revolution Tour” event → in Berlin, Germany, April 9–10.   Keep up to date with all the hottest cleantech news by subscribing to our (free) cleantech newsletter, or keep an eye on sector-specific news by getting our (also free) solar energy newsletter, electric vehicle newsletter, or wind energy newsletter.  


News Article | April 29, 2016
Site: phys.org

Beat by beat, the heart pumps blood through the arteries. In some people, however, the heart is too weak to supply the body with enough oxygen and nutrients, a condition often referred to as myocardial insufficiency or heart failure. A heart pump implanted in the body can help, although the control system that gives the pump the relevant commands must work very precisely. When developing medical devices such as heart pumps, engineers usually proceed one step after the next (serial development). They first develop the hardware: in this case, the heart pump. Only much later can they complete development of the control software, combine it with the hardware, and test it manually. Researchers from the Project Group for Automation in Medicine and Biotechnology at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA are speeding up this drawn-out process. "Using the hardware-in-the-loop method, we reduce both development times and development costs by up to 50 percent," says Jonathan Schächtele, who is a scientist in the project group. Hardware-in-the-loop (HiL) techniques were pioneered in the automotive industry. The previous method had been to develop many components in sequence, whereas HiL allowed engineers to develop parts in parallel processes and shorten integration times. Instead of testing electronic control units (ECUs) on the hardware, which runs the risk of damaging them, engineers create a computer model of the car that includes all details relevant for testing. They use this model to test the ECUs before the vehicle is even built. Special interfaces connect the ECU to the virtual car. The ECU receives information from the vehicle and also sends back commands for the simulated car to execute. Because the process is automated, developers can analyze a large number of test cases while also investigating critical system states in a reproducible, risk-free manner. Take an engine fault, for instance: does the control system react correctly when the engine dies? Engineers can analyze what happens when, say, a sensor fails, without actually having to snip the connecting wire. In addition, development becomes more transparent from the start, so faults are uncovered at an early stage. Looking at an assembled car and trying to figure out which component a fault is located in is thus a thing of the past. Now researchers have transferred this method to modern medical devices in which hardware and software are also strongly intertwined – such as heart pumps. "The challenges they present are similar – medical products are usually complex systems as well," explains Schächtele. "In addition, scenarios can be tested that could previously be estimated only using manual lab tests – a defect in the system, for instance." Thanks to HiL, the researchers can speed up the development process and increase the safety of the product. Because the tests run on a fully automated basis, medical device manufacturers can test more situations than previously possible. The automation tends therefore to result in more test runs, and in turn manufacturers can achieve a degree of safety that exceeds the legal requirements. Moreover, documentation of test results, which previously had to be carried out manually, is automatic when using HiL. The researchers at Fraunhofer IPA offer the whole package. "We design the computer model of the medical product, implement the interfaces between model and control module, define the test cases, and carry out the test runs," says Schächtele. To help with the automatic test runs and the documentation, the scientists have access to a sort of construction kit. For the Dutch medical engineering company Soteria Medical B.V., the researchers have already developed and tested the control technology for a biopsy system. "We were able to integrate the PLC quickly thanks to the hardware-in-the-loop method," says Gerrit Tiggelaar, head of development at Soteria Medical B.V. Explore further: Automotive safety systems get more dependable


Mezgar I.,Hungarian Academy of Sciences | Mezgar I.,Budapest University of Technology and Economics | Rauschecker U.,Fraunhofer Institute for Manufacturing Engineering and Automation
Computers in Industry | Year: 2014

Manufacturing enterprises have to organize themselves into effective system architectures forming different types of Networked Enterprises (NE) to match fast changing market demands. Cloud Computing (CC) is an important up to date computing concept for NE, as it offers significant financial and technical advantages beside high-level collaboration possibilities. As cloud computing is a new concept the solutions for handling interoperability, portability, security, privacy and standardization challenges have not been solved fully yet. The paper introduces the main characteristics of future Internet-based enterprises and the different CC models. An overview is given on interoperability and actual standardization issues in CC environments. A taxonomy on possible connecting forms of networked enterprises and cloud-based IT systems with reference on interoperability is introduced, parallel presenting four use cases as well. Finally, an example of connecting cloud and NE is presented as an effective application of cloud computing in manufacturing industry. © 2014 Elsevier B.V.


Pott A.,Fraunhofer Institute for Manufacturing Engineering and Automation
Mechanisms and Machine Science | Year: 2014

In this paper we present an improved method to compute force distributions for cable-driven parallel robots. We modify the closed-from solution such that the region where a solution is found is extended almost to the theoretical maximum, i.e. the wrench-feasible workspace. At the same time continuity along trajectories as well as real-time efficiency are maintained. The algorithm's complexity and thus the computational burden scales linearly in the number of redundant cables. Therefore, the algorithm can also be used for highly redundant cable robots. The proposed algorithm is compared to known methods and computational results are presented based on the IPAnema prototype. © Springer Science+Business Media Dordrecht 2014.

Loading Fraunhofer Institute for Manufacturing Engineering and Automation collaborators
Loading Fraunhofer Institute for Manufacturing Engineering and Automation collaborators