Time filter

Source Type

Mollmann H.,Kerckhoff Heart Center | Mollmann H.,Franz Groedel Institute of the Kerckhoff Heart Center | Nef H.M.,Kerckhoff Heart Center | Nef H.M.,Franz Groedel Institute of the Kerckhoff Heart Center | And 12 more authors.
Journal of Cellular and Molecular Medicine | Year: 2011

Recently, we demonstrated that a fully differentiated tissue developed on a ventricular septal occluder that had been implanted due to infarct-related septum rupture. We suggested that this tissue originated from circulating stem cells. The aim of the present study was to evaluate this hypothesis and to investigate the physiological differentiation and transdifferentiation potential of circulating stem cells. We developed an animal model in which a freely floating membrane was inserted into each the left ventricle and the descending aorta. Membranes were removed after pre-specified intervals of 3 days, and 2, 6 and 12 weeks; the newly developed tissue was evaluated using quantitative RT-PCR, immunohistochemistry and in situ hybridization. The contribution of stem cells was directly evaluated in another group of animals that were by treated with granulocyte macrophage colony-stimulating factor (GM-CSF) early after implantation. We demonstrated the time-dependent generation of a fully differentiated tissue composed of fibroblasts, myofibroblasts, smooth muscle cells, endothelial cells and new blood vessels. Cells differentiated into early cardiomyocytes on membranes implanted in the left ventricles but not on those implanted in the aortas. Stem cell mobilization with GM-CSF led to more rapid tissue growth and differentiation. The GM-CSF effect on cell proliferation outlasted the treat ment period by several weeks. Circulating stem cells contributed to the development of a fully differentiated tissue on membranes placed within the left ventricle or descending aorta under physiological conditions. Early cardiomyocyte generation was identified only on membranes positioned within the left ventricle. © 2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.


PubMed | Franz Groedel Institute of the Kerckhoff Heart Center
Type: Journal Article | Journal: Journal of cellular and molecular medicine | Year: 2010

An important goal in cardiology is to minimize myocardial necrosis and to support a discrete but resilient scar formation after myocardial infarction (MI). Macrophages are a type of cells that influence cardiac remodelling during MI. Therefore, the goal of the present study was to investigate their transcriptional profile and to identify the type of activation during scar tissue formation. Ligature of the left anterior descending coronary artery was performed in mice. Macrophages were isolated from infarcted tissue using magnetic cell sorting after 5 days. The total RNA of macrophages was subjected to microarray analysis and compared with RNA from MI and LV-control. mRNA abundance of relevant targets was validated by quantitative real-time PCR 2, 5 and 10 days after MI (qRT-PCR). Immunohistochemistry was performed to localize activation type-specific proteins. The genome scan revealed 68 targets predominantly expressed by macrophages after MI. Among these targets, an increased mRNA abundance of genes, involved in both the classically (tumour necrosis factor alpha, interleukin 6, interleukin 1beta) and the alternatively (arginase 1 and 2, mannose receptor C type 1, chitinase 3-like 3) activated phenotype of macrophages, was found 5 days after MI. This observation was confirmed by qRT-PCR. Using immunohistochemistry, we confirmed that tumour necrosis factor alpha, representing the classical activation, is strongly transcribed early after ligature (2 days). It was decreased after 5 and 10 days. Five days after MI, we found a fundamental change towards alternative activation of macrophages with up-regulation of arginase 1. Our results demonstrate that macrophages are differentially activated during different phases of scar tissue formation after MI. During the early inflammatory phase, macrophages are predominantly classically activated, whereas their phenotype changes during the important transition from inflammation to scar tissue formation into an alternatively activated type.

Loading Franz Groedel Institute of the Kerckhoff Heart Center collaborators
Loading Franz Groedel Institute of the Kerckhoff Heart Center collaborators