Time filter

Source Type

Beau-Faller M.,University of Strasbourg | Blons H.,University of Paris Descartes | Domerg C.,Institute Gustave Roussy | Gajda D.,Institute Gustave Roussy | And 26 more authors.
Journal of Molecular Diagnostics | Year: 2014

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors have limited use as first-line treatment for mutated EGFR metastatic non-small cell lung cancer. The French National Cancer Institute has installed molecular genetics platforms implementing EGFR and KRAS testing. However, there is considerable uncertainty as to which detection methods should be applied for routine diagnosis. This study aimed to compare the EGFR and KRAS genotyping methods developed by the IFCT/ERMETIC2 network platforms in two blind panels: 25 samples of serial dilutions of cell line DNA (20 centers) and 74 FFPE lung tumor samples (10 centers). The best threshold of mutation detection on cell lines was obtained using allele-specific amplification-based technologies. Nonamplifiable tissue samples were significantly less common when using alternative testing versus direct sequencing [15%; 95% confidence interval (CI), 14%-16% versus 40%; 95% CI, 39%-42%; P < 0.001]. Mutated cases increased from 42% (95% CI, 31%-54%) to 53% (95% CI, 41%-64%), with three supplementary EGFR mutations (p.G179A at exon 18 and p.L858R and p.L861Q at exon 21) and five supplementary KRAS mutations, when using alternative testing instead of direct sequencing. False-positive results were observed when using a PCR-based sizing assay, high-resolution melting, or pyrosequencing. Concordance analysis returned good kappa test scores for EGFR exon 19 and KRAS analysis when comparing sequencing with alternative methods and revealed no difference between alternative techniques themselves. Copyright © 2014 American Society for Investigative Pathology.

Loading Francophone Intergroup of Thoracic Oncology collaborators
Loading Francophone Intergroup of Thoracic Oncology collaborators