Sant Cugat Del Valles, Spain
Sant Cugat Del Valles, Spain
SEARCH FILTERS
Time filter
Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: SME-2 | Phase: ICT-37-2014 | Award Amount: 1.08M | Year: 2015

The main objective of the project is to take to market a new disruptive antenna technology (Virtual AntennaTM) which has been patented by Fractus, based on a new element (antenna booster) as replacement of existing antennas in wireless devices such as smartphones, tablets, and laptops. The aim is to obtain a unique miniature and multiband solution (10 times smaller in volume than conventional antennas) for these devices and valid for all frequency bands of operation (2G, 3G, 4G). Fractus is marketing this product and the technology that underpins the project has been validated in real environments, but as specific objectives in this project, the company needs to design and validate new solutions to cover more market needs. The appearance of new mobile bands (4G and future 5G) and smart antenna technologies (LTE/MIMO), adds additional challenges to the integration of conventional antenna solutions inside handset platforms. All these requirements represent a bottleneck of the current technology, meaning a great business opportunity for the Virtual AntennaTM Technology, which as a miniature multiband antenna technology can solve all detected drawbacks by offering advantages (mainly cost, size reduction, off-the-shelf, pick&place maintaining technical performance) for wireless devices manufacturers. A new product will be built upon the novel technology patented by Fractus which presents relevant competitive advantages within conventional and alternative solutions in terms of performance, size, standardization (off-the-shelf) and costs (part\assembly) for potential clients and end users. These aspects, the intellectual property protection and with the huge potential market ahead (more than 2300 million units), represent a great opportunity for a European technology to compete in the international scene. Virtual AntennaTM will mean a significant increase in sales revenue and growth in corporate terms and employment, being core project action for the next years for Fractus


Patent
Fractus SA | Date: 2016-02-22

An antenna includes at least two radiating arm structures made of or limited by a conductor, superconductor or semiconductor material. The two arms are coupled through a region on first and second superconducting arms such that the combined structure forms a small antenna with broadband behavior, multiband behavior or a combination thereof. The coupling between the two radiating arms is obtained via the shape and spatial arrangement thereof, in which at least one portion on each arm is placed in close proximity to each other (e.g., at a distance smaller than 1/10 of the longest free-space operating wavelength) to allow electromagnetic fields in one arm to be transferred to the other through close proximity regions. The proximity regions are spaced from the feeding port of the antenna (e.g., greater than 1/40 of the free-space longest operating wavelength) and specifically exclude the feeding port of the antenna.


Patent
Fractus SA | Date: 2016-03-29

A novel geometry, the geometry of Space-Filling Curves (SFC) is defined in the present invention and it is used to shape a part of an antenna. By means of this novel technique, the size of the antenna can be reduced with respect to prior art, or alternatively, given a fixed size the antenna can operate at a lower frequency with respect to a conventional antenna of the same size.


Patent
Fractus SA | Date: 2015-06-12

A radiating system of a wireless device transmits and receives electromagnetic wave signals in a frequency region and comprises an external port, a radiating structure, and a radiofrequency system. The radiating structure includes: a ground plane layer with a connection point; a radiation booster with a connection point and being smaller than 1/30 of a free-space wavelength corresponding to a lowest frequency of the frequency region; and an internal port between the radiation booster connection point and the ground plane layer connection point. The radiofrequency system includes: a first port connected to the radiating structures internal port; and a second port connected to the external port. An input impedance at radiating structures disconnected internal port has a non-zero imaginary part across the frequency region. The radiofrequency system modifies impedance of the radiating structure to provide impedance matching to the radiating system within the frequency region at the external port.


Patent
Fractus SA | Date: 2015-02-20

An antenna includes at least two radiating arm structures made of or limited by a conductor, superconductor or semiconductor material. The two arms are coupled through a region on first and second superconducting arms such that the combined structure forms a small antenna with broadband behavior, multiband behavior or a combination thereof. The coupling between the two radiating arms is obtained via the shape and spatial arrangement thereof, in which at least one portion on each arm is placed in close proximity to each other (e.g., at a distance smaller than 1/10 of the longest free-space operating wavelength) to allow electromagnetic fields in one arm to be transferred to the other through close proximity regions. The proximity regions are spaced from the feeding port of the antenna (e.g., greater than 1/40 of the free-space longest operating wavelength) and specifically exclude the feeding port of the antenna.


Patent
Fractus SA | Date: 2016-04-25

A multi-band antenna includes at least one structure usable at multiple frequency ranges. The structure includes at least two levels of detail, with one level of detail making up another level of detail. The levels of detail are composed of closed plane figures bounded by the same number of sides. An interconnection circuit links the multi-band antenna to an input/output connector and incorporates adaptation networks, filters or diplexers. Each of the closed plane figures is linked to at least one other closed plane figure to exchange electromagnetic power. For at least 75% of the closed plane figures, the region or area of contact, intersection, or interconnection between the closed plane figures is less than 50% of their perimeter or area. Not all of the closed plane figures have the same size, and the perimeter of the structure has a different number of sides than its constituent closed plane figures.


Patent
Fractus SA | Date: 2015-06-08

The present invention relates to an integrated circuit package comprising at least one substrate, each substrate including at least one layer, at least one semiconductor die, at least one terminal, and an antenna located in the integrated circuit package, but not on said at least one semiconductor die. The conducting pattern comprises a curve having at least five sections or segments, at least three of the sections or segments being shorter than one-tenth of the longest free-space operating wavelength of the antenna, each of the five sections or segments forming a pair of angles with each adjacent segment or section, wherein the smaller angle of each of the four pairs of angles between sections or segments is less than 180 (i.e., no pair of sections or segments define a longer straight segment), wherein at least two of the angles are less than 115, wherein at least two of the angles are not equal, and wherein the curve fits inside a rectangular area the longest edge of which is shorter than one-fifth of the longest free-space operating wavelength of the antenna.


Patent
Fractus SA | Date: 2016-08-09

The present invention refers to a triple-band antenna array for cellular base stations operating at a first frequency band and at a second frequency band within a first frequency range, and also at a third frequency band within a second frequency range. Said triple-band antenna array comprises a first set of radiating elements operating at the first frequency band, a second set of radiating elements operating at the second frequency band, a third set of radiating elements operating at both the third and the first frequency bands, and a fourth set of radiating elements operating at both the third and the second frequency bands. The radiating elements are arranged in such a way that at least some of the radiating elements of the first set are interlaced with at least some of the radiating elements of the third set, and at least some of the radiating elements of the second set are interlaced with at least some of the radiating elements of said fourth set. Further the invention relates to a slim triple-band base station for mobile/cellular services that includes in its radiating part two or more of said triple-band antenna arrays.


Patent
Fractus SA | Date: 2015-07-23

A wireless handheld or portable device includes an antenna system operable in a first frequency region and a higher, second frequency region. The antenna system comprises an antenna structure, a matching and tuning system, and an external input/output (I/O) port. The antenna structure comprises at least one radiating element including a connection point, a ground plane layer including at least one connection point, and at least one internal I/O port. At least one radiating element of the antenna structure protrudes beyond the ground plane layer. The antenna structure features at any of its internal I/O ports when disconnected from the matching and tuning system an input return loss curve having a minimum at a frequency outside the first frequency region of the antenna system. The matching and tuning system modifies the impedance of the antenna structure and provides impedance matching to the antenna system in the first and second regions.


Patent
Fractus SA | Date: 2015-07-23

A wireless handheld or portable device includes a communication module with a MIMO system that provides multiband MIMO operation in first and second frequency bands. The MIMO system includes first and second radiating systems, a ground plane common to the two radiating systems, first and second radio frequency systems, and a MIMO module. The first and second radiating systems both operate in the first and second frequency bands and respectively include first and second radiating structures coupled to the ground plane, which respectively have first and second radiation boosters that fit in an imaginary sphere having a diameter smaller than of a diameter of a radiansphere of a longest wavelength of the first frequency band. The first and second radiofrequency systems respectively modify impedance of the first and second radiating structures to provide impedance matching to the first and second radiating systems within the first and second frequency bands.

Loading Fractus SA collaborators
Loading Fractus SA collaborators