Entity

Time filter

Source Type

Sant Cugat Del Valles, Spain

Patent
Fractus SA | Date: 2015-04-23

This invention refers to an antenna structure for a wireless device comprising a ground plane and an antenna element, wherein the ground plane has the shape of an open loop. The invention further refers to an antenna structure for a wireless device, such as a light switch or a wristsensor or wristwatch, comprising an open loop ground plane having a first end portion and a second end portion, the open loop ground plane defining an opening between the first end portion and the second end portion; and an antenna component positioned within the opening defined between the first end portion and the second end portion and overlapping at least one of the first end portion or the second end portion. Further the invention refers to a corresponding wireless device and to a method for integrating such an antenna structure in a wireless device.


A wireless handheld device comprises an internal antenna system that operates in first and second non-overlapping frequency bands with respective bandwidths. The antenna system includes: a ground plane; first and second antenna elements connected to a common input/output port, wherein a bandwidth of each of the antenna elements is less than at least one of the first and second operating frequency bandwidths and less than a frequency bandwidth for the antenna system; a combining structure to couple first and second signal transmission paths from the antenna elements to the common input/output port; and a phase shifting element on the first signal transmission path that imparts a phase delay to signals on the first signal transmission path. The phase delay minimizes a sum of reflection coefficients of the antenna elements to cause the frequency bandwidth for the antenna system to include at least the first and second operating frequency bands.


Patent
Fractus SA | Date: 2015-06-12

A radiating system of a wireless device transmits and receives electromagnetic wave signals in a frequency region and comprises an external port, a radiating structure, and a radiofrequency system. The radiating structure includes: a ground plane layer with a connection point; a radiation booster with a connection point and being smaller than 1/30 of a free-space wavelength corresponding to a lowest frequency of the frequency region; and an internal port between the radiation booster connection point and the ground plane layer connection point. The radiofrequency system includes: a first port connected to the radiating structures internal port; and a second port connected to the external port. An input impedance at radiating structures disconnected internal port has a non-zero imaginary part across the frequency region. The radiofrequency system modifies impedance of the radiating structure to provide impedance matching to the radiating system within the frequency region at the external port.


A multifunction wireless device having at least one of multimedia functionality and smartphone functionality, the multifunction wireless device including an upper body and a lower body, the upper body and the lower body being adapted to move relative to each other in at least one of a clamshell, a slide, and a twist manner. The multifunction wireless device further includes an antenna system disposed within at least one of the upper body and the lower body and having a shape with a level of complexity of an antenna contour defined by complexity factors F


Patent
Fractus SA | Date: 2015-02-20

An antenna includes at least two radiating arm structures made of or limited by a conductor, superconductor or semiconductor material. The two arms are coupled through a region on first and second superconducting arms such that the combined structure forms a small antenna with broadband behavior, multiband behavior or a combination thereof. The coupling between the two radiating arms is obtained via the shape and spatial arrangement thereof, in which at least one portion on each arm is placed in close proximity to each other (e.g., at a distance smaller than 1/10 of the longest free-space operating wavelength) to allow electromagnetic fields in one arm to be transferred to the other through close proximity regions. The proximity regions are spaced from the feeding port of the antenna (e.g., greater than 1/40 of the free-space longest operating wavelength) and specifically exclude the feeding port of the antenna.

Discover hidden collaborations