Belleair Beach, FL, United States
Belleair Beach, FL, United States

Time filter

Source Type

Systems according to the present disclosure provide one or more surfaces that function as heat or power radiating surfaces for which at least a portion of the radiating surface includes or is composed of fractal cells placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges.


Patent
Fractal Systems, Inc. | Date: 2016-11-01

Novel capacitors that have volumetric components that incorporate one or more folds and/or bends and/or have self-similar structures are disclosed. The components may have surfaces that are fractal in finite iterations for at least a portion of the component; moreover, the components (e.g., opposing capacitive elements) may be self-complementary to one another such that one component is self-complementary to another component in a given capacitor. Methods of using 3D printers to make such capacitors and capacitive components are also described.


Patent
Fractal Systems, Inc. | Date: 2016-11-10

Plasmonic-surface antenna systems are described in which resonators, or cells, are closely arranged but do not touch. At least a portion of a radiating surface includes a plurality of cells (operative as resonators) placed very close together to one so that a surface (plasmonic) wave causes near replication of the current of one cell in an adjacent cell. Cells with one or more fractal shapes may be used as a fractal plasmonic surface (FPS). Systems and/or methods are described of using plasmonic surfaces or fractal plasmonic surfaces for radiofrequency identification (RFID). A PS or FPS may act as an intermediary array of antennas, which can serve to connect an RFID reader with one or more RFID tags. Structures including cages are described that can include one or more surfaces that are each an FPS. Methods of power transfer are described.


Patent
Fractal Systems, Inc. | Date: 2016-07-27

Antennas, antenna systems, and communications devices are described that provide an antenna utilizing a fractal and/or self-similar conductive element that is novel and inventive in that its small in size and exhibits multiple-band or wideband frequency coverage which allows a miniature communications device incorporating the antenna to operate (e.g., function) with wide-band capabilities in close-proximity to a users body and in form factor suitable for wearing by the user. As noted above, previous size and performance limitations of prior art antennas/devices were poor and made those devices either of limited utility or inoperable.


Patent
Fractal Systems, Inc. | Date: 2015-10-19

Arrangement of resonators in an aperiodic configurations are described, which can be used for electromagnetic cloaking of objects. The overall assembly of resonators, as structures, do not all repeat periodically and at least some of the resonators are spaced such that their phase centers are separated by more than a wavelength. The arrangements can include resonators of several different sizes and/or geometries arranged so that each size or geometry corresponds to a moderate or high Q response that resonates within a specific frequency range, and that arrangement within that specific grouping of akin elements is periodic in the overall structure. The relative spacing and arrangement of groupings can be defined by self similarity and origin symmetry. Fractal based scatters are described. Further described are bondary condition layer structures that can activate and deactive cloaking/lensing structures.


Systems according to the present disclosure provide one or more surfaces that function as heat or power radiating surfaces for which at least a portion of the radiating surface includes or is composed of fractal cells placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges.


Patent
Fractal Systems, Inc. | Date: 2012-08-24

Arrangement of resonators in an aperiodic configurations are described, which can be used for electromagnetic cloaking of objects. The overall assembly of resonators, as structures, do not all repeat periodically and at least some of the resonators are spaced such that their phase centers are separated by more than a wavelength. The arrangements can include resonators of several different sizes and/or geometries arranged so that each size or geometry corresponds to a moderate or high Q response that resonates within a specific frequency range, and that arrangement within that specific grouping of akin elements is periodic in the overall structure. The relative spacing and arrangement of groupings can be defined by self similarity and origin symmetry.


Systems according to the present disclosure provide one or more surfaces that function as heat or power radiating surfaces for which at least a portion of the radiating surface includes or is composed of fractal cells placed sufficiently closed close together to one another so that a surface (plasmonic) wave causes near replication of current present in one fractal cell in an adjacent fractal cell. A fractal of such a fractal cell can be of any suitable fractal shape and may have two or more iterations. The fractal cells may lie on a flat or curved sheet or layer and be composed in layers for wide bandwidth or multibandwidth transmission. The area of a surface and its number of fractals determines the gain relative to a single fractal cell. The boundary edges of the surface may be terminated resistively so as to not degrade the cell performance at the edges.


Patent
Fractal Systems, Inc. | Date: 2015-01-16

Arrangement of resonators in an aperiodic configurations are described, which can be used for electromagnetic cloaking of objects. The overall assembly of resonators, as structures, do not all repeat periodically and at least some of the resonators are spaced such that their phase centers are separated by more than a wavelength. The arrangements can include resonators of several different sizes and/or geometries arranged so that each size or geometry corresponds to a moderate or high Q response that resonates within a specific frequency range, and that arrangement within that specific grouping of akin elements is periodic in the overall structure. The relative spacing and arrangement of groupings can be defined by self similarity and origin symmetry.


Aspect of the present disclosure are directed to methods and apparatus producing enhanced radiation characteristics, e.g., wideband behavior, in or for antennas and related components by providing concentric sleeves, with air or dielectric material as a spacer, where the sleeves include one or more conductive layers, at least a portion of which includes fractal resonators closely spaced, in terms of wavelength. A further aspect of the present disclosure is directed to surfaces that include dual-use or multiple-use apertures. Such aperture engine surfaces can include a top (or first) layer of antenna arrays, a middle (or second) layer of a metal-fractal backplane player, and a third (or bottom) layer for solar cell or solar oriented power collection.

Loading Fractal Systems, Inc. collaborators
Loading Fractal Systems, Inc. collaborators