Foxconn Nanotechnology Research Center

Beijing, China

Foxconn Nanotechnology Research Center

Beijing, China
SEARCH FILTERS
Time filter
Source Type

Qian Q.,Foxconn Nanotechnology Research Center | Li G.,Foxconn Nanotechnology Research Center | Jin Y.,Foxconn Nanotechnology Research Center | Liu J.,Foxconn Nanotechnology Research Center | And 4 more authors.
ACS Nano | Year: 2014

The often observed p-type conduction of single carbon nanotube field-effect transistors is usually attributed to the Schottky barriers at the metal contacts induced by the work function differences or by the doping effect of the oxygen adsorption when carbon nanotubes are exposed to air, which cause the asymmetry between electron and hole injections. However, for carbon nanotube thin-film transistors, our contrast experiments between oxygen doping and electrostatic doping demonstrate that the doping-generated transport barriers do not introduce any observable suppression of electron conduction, which is further evidenced by the perfect linear behavior of transfer characteristics with the channel length scaling. On the basis of the above observation, we conclude that the environmental adsorbates work by more than simply shifting the Fermi level of the CNTs; more importantly, these adsorbates cause a poor gate modulation efficiency of electron conduction due to the relatively large trap state density near the conduction band edge of the carbon nanotubes, for which we further propose quantitatively that the adsorbed oxygen-water redox couple is responsible. © 2014 American Chemical Society.

Loading Foxconn Nanotechnology Research Center collaborators
Loading Foxconn Nanotechnology Research Center collaborators