Time filter

Source Type

Hsinchu, Taiwan

Wang C.-N.,National Kaohsiung University of Applied Sciences | Huang Y.-F.,National Kaohsiung University of Applied Sciences | Le T.-N.,National Kaohsiung University of Applied Sciences | Ta T.-T.,Foxconn Electronics Inc.
Sustainability (Switzerland) | Year: 2016

The Japanese automobile industry has been hit sharply by the economic downturn of recent decades. The rise in costs and decline in sales have led to serious problems in the auto industry. In order to address these issues, most companies engage in downsizing and redesigning production operations. It is crucial to investigate the time wasted by replacing assembly boards occurring in manufacturing lines. Therefore, the aim of this study was to provide an integrated approach, Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ), to providing efficient solutions for the automobile industry. The first step of this methodology is to detail the technical problems using the Function and Attribute Analysis (FAA) model. Secondly, a contradiction matrix and the inventive principle were applied to find the solutions. In this study, an auto part supplier named Sumi-Hanel located in Hanoi, Vietnam, was taken as a case study; the empirical results showed that waste time had been reduced to 67%, nearly 8400 square meters was saved, and a 20% cost reduction was achieved by reusing old frames. The research proves that the combination of TRIZ and lean manufacturing successfully increases production performance and reduces waste due to technological advancements. © 2016 by the authors. Source

Agili S.S.,Pennsylvania State University | Morales A.W.,Pennsylvania State University | Li J.,Foxconn Electronics Inc. | Resso M.,Agilent Technologies
IEEE Transactions on Instrumentation and Measurement | Year: 2012

This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S-parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the development of a Monte Carlo simulation method in order to predict the variability of frequency-domain measurements. Experiments are performed to identify and characterize frequency-domain random errors, such as instrument noise, connector repeatability, and calibration variations, in measurement systems. By comparing with real measurement data, it is shown that random-error effects can be accurately estimated by the PDF's obtained and the Monte Carlo technique. © 2012 IEEE. Source

Wang C.-N.,National Kaohsiung University of Applied Sciences | Lin H.-S.,National Kaohsiung University of Applied Sciences | Hsueh M.-H.,National Kaohsiung University of Applied Sciences | Wang Y.-H.,Chihlee Institute of Technology | And 2 more authors.
Sustainability (Switzerland) | Year: 2016

Scientists have found that nanomaterials possess many outstanding features in their tiny grain structure compared to other common materials. Titanium at the nano-grain scale shows many novel characteristics which demonstrate suitability for use in surgical implants. In general, equal channel angular pressing (ECAP) is the most popular and simple process to produce nano-titanium. However, ECAP is time-consuming, power-wasting, and insufficiently produces the ultrafine grain structure. Therefore, the objective of this research is to propose a new method to improve the ECAP's performances to reach the ultrafine grain structure, and also to save production costs, based on the innovation theory of Teoriya Resheniya Izobreatatelskih Zadatch (TRIZ). Research results show that the process time is reduced by 80%, and 94% of the energy is saved. Moreover, the grain size of the diameter for nano-titanium can be reduced from 160 nanometers (nm) to 80 nm. The results are a 50% reduction of diameter and a 75% improvement of volume. At the same time, the method creates a refined grain size and good mechanical properties in the nano-titanium. The proposed method can be applied to produce any nanomaterial as well as biomaterials. © 2016 by the authors. Source

Chiu H.-P.,Foxconn Electronics Inc. | Tu C.-N.,Foxconn Electronics Inc. | Wu S.-K.,Foxconn Electronics Inc. | Chien-Hsiou L.,Fu Jen Catholic University
International Journal of Human-Computer Interaction | Year: 2015

Tablet computers have become ubiquitous. There is a serious risk that using tablets may lead to musculoskeletal disorders. This research aims to investigate, for tablet computer users, the musculature load and comfort perception of the engaged upper extremity for three angles of viewing and common task types performed at a computer workstation. Thirty healthy adults were recruited. A 3 × 2 repeated experimental design with tilt angle (22.5°, 45°, and 67.5° from horizontal) and task type (movie watching vs. game playing) was employed. The muscular activity of the upper extremity was assessed by electromyography measurement. Subjective comfort ratings were collected using the visual analogue scale. The results showed that when tablets were mounted at a high tilt angle (67.5°), neck muscle activity was low; however, when the tablet computer was mounted at a low tilt angle (22.5°), shoulder forward flexion activity was low, particularly during the game-playing task. This article suggests that users who feel musculoskeletal discomfort in the neck area increase the angle of their tablet computers to decrease neck stress and that users who have musculoskeletal discomfort in the shoulder area position the tablet computer at a lower tilt angle to decrease shoulder stress. Copyright © Taylor & Francis Group, LLC. Source

Wang C.-N.,National Kaohsiung University of Applied Sciences | Lee Y.-H.,National Kaohsiung University of Applied Sciences | Lee Y.-H.,Metal Industries Research and Development Center | Hsu H.-P.,National Kaohsiung Marine University | And 2 more authors.
Computers and Industrial Engineering | Year: 2016

The 450 mm transition of wafer fabrication is the current trend of semiconductor industry. However, the increased size and weight of wafers pose challenges on wafer handling and transportation. To address this issue, conveyor-based automated material handling system (AMHS) has been suggested as a solution due to its advantages. However, the lack of an effective and efficient dispatching method will make a convey-based AMHS to remain suffer traffic-jams problem and short the capability to handle hot lots to meet customer needs. In this study, a heuristic preemptive dispatching method (HPDB) is proposed for controlling the movements of wafer lots in a convey-based AMHS that is restructured based on activated roller belt (ARB) and to be used for 450 mm wafer fabrication. To investigate the effectiveness of the HPDB, simulation experiments have been conducted and the results obtained from HPDB has been compared to that obtained from HPD. The experimental results show that HPDB outperforms HPD in terms of average delivery time, with the advantages of 55.11% for hot lots and 55.76% for normal lots. This indicates that HPDB can better solve the traffic-jam problem and reduce transportation time. © 2016 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations