Foundation for Cardiac Surgery Development

Zabrze, Poland

Foundation for Cardiac Surgery Development

Zabrze, Poland

Time filter

Source Type

Major R.,Polish Academy of Sciences | Lackner J.M.,Joanneum Research | Gorka K.,Foundation for Cardiac Surgery Development | Wilczek P.,Foundation for Cardiac Surgery Development | Major B.,Polish Academy of Sciences
RSC Advances | Year: 2013

The objective of this work was to modify the inner surfaces of polymer tubes to improve their biocompatibility with blood cells. New materials that were designed to be placed in contact with blood during forced blood circulation were studied. The inner surfaces of these tubes were covered with anti-thrombogenic coatings. Materials based on silicon carbide, silicon oxide, and silicon nitride were deposited. Depending on the topography and the chemical nature of the inner vessel surface, a non-thrombogenic bio-surface, also called a neointima, was formed. Several expected applications of this work are discussed, including archetypal human blood vessels, the design of a nanostructural artificial substitute, optimising the surface using vacuum-coating techniques, characterising materials on multiple scales, and studying the blood-material interaction under dynamic conditions in an arterial flow environment. Several promising solutions for inhibiting the activation of the blood-clotting cascade via the use of appropriate surface architectures have been obtained. These solutions may be applied in advanced biocompatible cardiovascular implants. © 2013 The Royal Society of Chemistry.


Mzyk A.,Polish Academy of Sciences | Major R.,Polish Academy of Sciences | Lackner J.M.,Joanneum Research | Bruckert F.,Grenoble Institute of Technology | And 2 more authors.
RSC Advances | Year: 2015

The multilayer polyelectrolyte films (PEMs) seem to be promising coatings to simulate the structure and behavior of the extracellular matrix. PEMs constructed through Layer by Layer deposition of oppositely charged polymers have become a powerful tool for tailoring biointerfaces. Films consisting of chitosan/chondroitin sulfate polymers exhibit a fast biodegradability in the environment of human tissues. Lifetime extension of this material type could be implemented by its structure stabilization through cross-linking or introduction of nanoparticles. Transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) methods were used to determine the microstructure and localization of the silicon carbide nanoparticles introduced to the extracellular like structure of the polymer coatings. The numerical analysis of nanoparticles dispersion and mechanical properties was verified by indentation measurements. Modified coatings biocompatibility was analyzed by cytotoxicity assays and microscopic observations of the growth of endothelial cells on the material surface. Comparison of stabilization methods including chemical cross-linking and SiC nanoparticles introduction into multilayer polyelectrolyte films has shown that both stabilizers could be useful for biomedical applications. However, SiC nanoparticles application could be limited by slightly lower endothelialization efficiency and risk of cytotoxicity due to their release from coatings. This journal is © The Royal Society of Chemistry 2015.


Mzyk A.,Polish Academy of Sciences | Major R.,Polish Academy of Sciences | Kot M.,AGH University of Science and Technology | Gostek J.,Polish Academy of Sciences | And 2 more authors.
Archives of Civil and Mechanical Engineering | Year: 2014

The aim of this study was to improve properties of blood contacting materials such as polyurethane, in a form of intelligent, self-organizing and self-controlling coatings, which allow the selective mobilization and colonization of the endothelial cells on their surface. The prepared multilayer polyelectrolyte scaffolds were cross-linked chemically by EDC/NHS reagents in order to control their physicochemical properties and thus improving potential to endothelialization. Four types of coatings, i.e. non-cross-linked, cross-linked by 260. mM, 400. mM and 800. mM EDC reagent, were investigated. Their comparison was performed based on the results of the surface topography measurements using Atomic Force Microscopy (AFM), cellular morphology and proliferation analysis using Confocal Laser Scanning Microscopy (CLSM) and the mechanical properties examinations.The optimal multilayer rigidity and surface roughness parameters were found for an effective control of the endothelial cells growth. Surface topography analysis indicated an increase in the coating's roughness due to application of higher EDC cross-linker concentrations. Mechanical studies revealed that cross-linking caused a significant increase in the hardness and elastic modulus. The results from the cellular experiments allowed the conformation that 400. mM cross-linked PLL/HA films possess desired properties. © 2013 Politechnika Wroclawska.


Mzyk A.,Polish Academy of Sciences | Lackner J.M.,Joanneum Research | Wilczek P.,Foundation for Cardiac Surgery Development | Lipinska L.,Institute Of Electronic Materials Technology of Poland | And 3 more authors.
RSC Advances | Year: 2016

The new multilayer polyelectrolyte films (PEMs) that are able to simulate the structure and functions of the extracellular matrix have become a powerful tool for tailoring biointerfaces of implants. In this study, bioactive PEM coatings have been investigated as a supportive system for efficient endothelialization of cardiovascular implants. The modern films were designed in a manner that allows one to potentially induce specific response from the tissues surrounding the biomaterial due to its chemical composition as well as mechanical properties. The PEM rigidity was regulated by the cross-linking chemistry as well as nanoparticle incorporation, while biochemical modification was performed by the VEGF adsorption within coatings. Obtained results have shown that PEM/VEGF films enhanced in vitro spreading and proliferation of endothelial cells, whereas VEGF presence inhibited IL-6 production and release. Since non-functionalized films also contributed to proliferation of endothelial cells and cytokine secretion, it may be supposed that PEM stiffness acts in synergy with the growth factor, but probably through a different pathway. Results clearly demonstrate the effectiveness of the proposed endothelialization strategy and confirm correlation between the chemical and mechanical properties of the PEMs in vitro. © The Royal Society of Chemistry 2016.


Nawrat Z.,Foundation for Cardiac Surgery Development
Bulletin of the Polish Academy of Sciences: Technical Sciences | Year: 2010

The paper presents the current state of works conducted by the Zabrze team under the Robin Heart surgical robot and the Robin Heart Uni System mechatronic surgical tools project as a example of introducing technology and materials advances for progress in surgical robots. The special intention of the author is to show the review of the current and futuristic medical robots needs in the area of material science.


Malota Z.,Foundation for Cardiac Surgery Development | Sadowski W.,Foundation for Cardiac Surgery Development | Krzyskow M.,Foundation for Cardiac Surgery Development | Stolarzewicz B.,Plastmed
Artificial Organs | Year: 2016

The Polish ventricular assist device (Polvad) has been used successfully in clinical contexts for many years. The device contains two single-disc valves, one at the inlet and one at the outlet connector of the pneumatic pump. Unfortunately, in recent years, a problem has occurred with the availability of single-disc valves. This article presents the possibility of using bileaflet mechanical heart valve prostheses in the Polvad to avoid a discontinuity in clinical use. The study is based on experimental and numerical simulations and comparison of the distribution of flow, pressure, and stress (wall, shear, and turbulent) inside the Polvad chamber and the inlet/outlet connectors fitted with Sorin Monodisc and Sorin Bicarbon Fitline valves. The type and orientation of the inlet valve affects valve performance and flow distribution inside the chamber. Near-wall flow is observed for single-disc valves. In the case of bileaflet valves, the main jet is directed more centrally, with lower shear stress but higher turbulent stress in comparison with single-disc valves. For clinical usage, a 45° orientation of the bileaflet inlet valve was chosen, as this achieves good washing of the inlet area near the membrane paste surface. The Polvad with bileaflet valves has now been used successfully in our clinic for over a year and will continue to be used until new assist devices for heart support are developed. © 2016 Wiley Periodicals, Inc.


Sarna J.,Foundation for Cardiac Surgery Development | Kustosz R.,Foundation for Cardiac Surgery Development | Major R.,Polish Academy of Sciences | Lackner J.M.,Joanneum Research | Major B.,Polish Academy of Sciences
Bulletin of the Polish Academy of Sciences: Technical Sciences | Year: 2010

Since 1991, the Foundation for Cardiac Surgery Development in Zabrze has been implementing research on the artificial heart. In 1995, an artificial ventricle, POLVAD, was implanted to a patient, and in 1998, the prototype of a clinical controller, POLPDU-401, was created. A further development of the studies on an implantable artificial heart requires an integrated approach and an application of advanced methods of materials sciences in order to develop new materials suitable for the contact with blood, as well as to apply a multilateral biomedical diagnostics in hydrodynamic conditions. The estimation of the cell-material interaction plays an important role in the biomaterial design. An analysis of the influence of the carbon content in titanium nitride on the biological and biophysical properties of biomaterial coatings was studied. The cell-material reactions were considered in dynamic and static conditions. Three groups of materials were under examinations - titanium nitride (TiN), as well as titanium carbonitride with a low and high carbon content - of which the best properties were observed for TiN. We found a strong influence of the stoichiometry of TiN (atomic ratio of Ti/N) on the biocompatibility. A non-stoichiometric TiN could have a negative influence on the surrounding tissue.


Wilczek P.,Foundation for Cardiac Surgery Development
Bulletin of the Polish Academy of Sciences: Technical Sciences | Year: 2010

Tissue engineering is a promising tool for the creation of a new type of the heart valve bioprothesis. The biological scaffold composed of decellularized tissue has been successfully used for the constructions of the valve prosthesis. An analysis of the efficiency of the valve leaflet acellularization methods and the influence of those methods on the morphology and the biomechanical properties of the ECM (extra cellular matrix) was performed. Fresh porcine hearts obtained from a slaughterhouse were used in the experiments. The efficiency of the acellularization methods was dependent on the tissue type and the acellularoization methods used. The more effective were the enzymatic methods, both because of the cell removal efficiency and the effect on the biomechanical properties of the heart valve. The differences in the biomechanical and morphological properties of the porcine aortic and the pulmonary valve after different types of the acellularization process could influence the hemodynamic conditions of the heart after the valve replacement, which limited the range of the tissue types used for the creations of the tissue engineered heart valve.


PubMed | Foundation for Cardiac Surgery Development and Medical University of Silesia, Katowice
Type: Journal Article | Journal: Kardiochirurgia i torakochirurgia polska = Polish journal of cardio-thoracic surgery | Year: 2017

Myxomas make up about 50% of benign cardiac neoplasms. The most common location is within the left atrium. At the initial stage they do not exhibit any specific clinical symptoms, so they are often diagnosed by accident or during examinations recommended for other reasons. Here we present acase of left atrium myxoma in apatient (aman, age 68 years) with adual chamber pacemaker. The myxoma did not reveal any clinical symptoms and was discovered in echocardiography during routine diagnostic examination preceding pacemaker implantation. The literature search made by the authors showed that this is the first recorded case of myxoma in apatient after the implantation of abiventricular pacemaker.


PubMed | Foundation for Cardiac Surgery Development and Plastmed
Type: Journal Article | Journal: Artificial organs | Year: 2016

The Polish ventricular assist device (Polvad) has been used successfully in clinical contexts for many years. The device contains two single-disc valves, one at the inlet and one at the outlet connector of the pneumatic pump. Unfortunately, in recent years, a problem has occurred with the availability of single-disc valves. This article presents the possibility of using bileaflet mechanical heart valve prostheses in the Polvad to avoid a discontinuity in clinical use. The study is based on experimental and numerical simulations and comparison of the distribution of flow, pressure, and stress (wall, shear, and turbulent) inside the Polvad chamber and the inlet/outlet connectors fitted with Sorin Monodisc and Sorin Bicarbon Fitline valves. The type and orientation of the inlet valve affects valve performance and flow distribution inside the chamber. Near-wall flow is observed for single-disc valves. In the case of bileaflet valves, the main jet is directed more centrally, with lower shear stress but higher turbulent stress in comparison with single-disc valves. For clinical usage, a 45 orientation of the bileaflet inlet valve was chosen, as this achieves good washing of the inlet area near the membrane paste surface. The Polvad with bileaflet valves has now been used successfully in our clinic for over a year and will continue to be used until new assist devices for heart support are developed.

Loading Foundation for Cardiac Surgery Development collaborators
Loading Foundation for Cardiac Surgery Development collaborators