Waltham, MA, United States
Waltham, MA, United States

Time filter

Source Type

PubMed | University of British Columbia, Northwestern University, Boston University, Irccs Instituto Centro San Giovanni Of Dio and 5 more.
Type: Journal Article | Journal: Cell | Year: 2016

Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.


News Article | December 20, 2016
Site: globenewswire.com

Dublin, Dec. 20, 2016 (GLOBE NEWSWIRE) -- Research and Markets has announced the addition of the "HDAC Inhibitors Market, 2016 - 2026" report to their offering. The HDAC Inhibitors Market, 2016-2026 report was commissioned to examine the current landscape and the future outlook of the growing pipeline of products in this area. HDACs have been studied in cellular processes such as apoptosis, autophagy, metabolism, DNA damage repair, cell cycle control and senescence. Altered expression of HDACs has been observed in different tumors; this makes them a potential target for treatment of cancer and other genetic or epigenetic related disorders. Inhibition of HDACs has shown positive results in disruption of multiple cell signaling pathways and prevention of tumor growth. The study provides a detailed market forecast and opportunity analysis for the time period 2016-2026. The research, analysis and insights presented in this report include potential sales of the approved drugs and the ones in late stages of development (phase III and phase II). To add robustness to our model, we have provided three scenarios for our market forecast; these include the conservative, base and optimistic scenarios. Our opinions and insights, presented in this study were influenced by several discussions we conducted with experts in this area. All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified. Example Highlights - Nearly 90 HDAC inhibitors are currently in clinical / preclinical stages of development; the clinical molecules account for over 30% of the pipeline while over 60% is captured by molecules in the preclinical / discovery stage. - With 66% of the pipeline molecules targeting oncological indications, cancer remains one of the most widely studied field for HDAC inhibitors. Within oncology, hematological malignancies such as PTCL and CTCL are popular targets; three HDAC inhibitors (Zolinza, ISTODAX® and BELEODAQ®) are approved for these indications. Other therapeutic areas such as autoimmune disorders, infectious diseases, inflammatory disorders, neurological disorders, are also gradually gaining traction. - Although the market was initially led by the large-size pharma players (such as Celgene, Merck, Novartis), the current market is characterized by the presence of several small / mid-sized pharma players. Notable examples of the small and mid-sized firms include 4SC, Chroma Therapeutics, CrystalGenomics, Curis, Evgen Pharma, FORUM Pharmaceuticals, Karus Therapeutics, Mirati Therapeutics, MEI Pharma, Shenzhen Chipscreen Biosciences, Syndax Pharmaceuticals and TetraLogic Pharmaceuticals. - In addition, there are several non-industry institutes and universities that are primarily carrying out preclinical research. Examples of these include Harvard Medical School (BG45), Imperial College London (C1A), Kyoto University (Jd, Sd), National Taiwan University (Quinazolin-4-one derivatives), Taipei Medical University (MPT0E028), University of Messina (MC-1575, MC-1568). - Four of the five approved drugs are pan-HDAC inhibitors targeting HDAC isoforms non-specifically. However, in the past few years, several class selective HDAC inhibitors have entered the clinic; these are associated with a higher efficacy and result in decreased toxicity from the treatment. Of the total HDAC inhibitors identified, 52% of the molecules are class specific; of these, 33% molecules target Class I specific isoforms and the rest target Class II specific isoforms of HDACs. Notable examples of molecules targeting class-specific HDACs includeentinostat (phase III), resminostat (phase II), SHP-141 (phase II), mocetinostat (phase II), CHR-3996 (phase I/II) and ricolinostat (phase I/II). - The HDAC inhibitors market is expected to grow at a healthy annual rate of 32% over the next decade.With multiple potential target indications, Istodax® is expected to capture the largest market share (close to 21%) in 2026, followed by entinostat, Farydak® and Beleodaq®. Key Topics Covered: 1. Preface 1.1. Scope Of The Report 1.2. Research Methodology 1.3. Chapter Outlines 2. Executive Summary 3. Introduction 3.1. The Central Dogma of Molecular Biology and Cell Cycle 3.2. DNA: Structure and Functions 3.3. Fundamentals of Epigenetics 3.3.1. Effect of Histone Modification on DNA Based Processes 3.3.2. Chromatin Structure Modification and its Enzymes 3.4. Histone Deacetylases (HDACs) 3.4.1. Classification of HDACs 3.4.2. Role of HDACs and HDAC Inhibitors in Cellular Processes 3.5. HDAC Inhibitors 3.5.1. Structure and Classification 3.5.2. Different Types of HDAC Inhibitors 3.5.3. Therapeutic Applications of HDAC Inhibitors 4. HDAC Inhibitors: Market Landscape 4.1. Chapter Overview 4.2. Development Pipeline of HDAC Inhibitors 4.3. Distribution by Phase of Development 4.4. Distribution by Therapeutic Area 4.5. Distribution by Class Specificity 4.6. Distribution by Type of Developer 4.7. Distribution by Geography 4.8. Active Industry Players 5. Drug Profiles: Marketed And Late-Stage HDAC Inhibitors 5.1. Chapter Overview 5.2. Company and Drug Profiles: Marketed and Phase III Molecules 5.2.1. Celgene Corporation 5.2.3. Novartis 5.2.4. Shenzhen Chipscreen Biosciences 5.2.5. Syndax Pharmaceuticals 5.3. Drug Profiles: Phase II Molecules 5.3.1. Abexinostat (PCI-24781) 5.3.2. CUDC-907 5.3.3. FRM-0334 (EVP-0334) 5.3.4. Givinostat (ITF2357) 5.3.5. Mocetinostat (MGCD103) 5.3.6. Pracinostat (SB939) 5.3.7. Resminostat (4SC-201) 5.3.8. SFX-01 5.3.9. SHAPE (SHP-141) 5.3.10. Tefinostat (CHR-2845) 6. Key Insights: Therapeutic Area, Class Specificity, Clinical Endpoints 6.1. Clinical Development Analysis: Class Specificity and Therapeutic Areas 6.2. Clinical Development Analysis: Developer Landscape 6.3. Clinical Development Analysis: Trial Endpoint Comparison 7. Market Forecast And Opportunity Analysis 7.1. Chapter Overview 7.2. Scope and Limitations 7.3. Forecast Methodology 7.4. Overall HDAC Inhibitors Market 7.5. HDAC Inhibitors Market: Individual Forecasts 7.5.1. Zolinza (Merck) 7.5.2. Istodax® (Celgene Corporation) 7.5.3. Beleodaq® (Onxeo) 7.5.4. Farydak® (Novartis) 7.5.5. Epidaza® (Shenzhen Chipscreen Biosciences) 7.5.6. Entinostat (Syndax Pharmaceuticals) 7.5.7. Abexinostat (Pharmacyclics) 7.5.8. CUDC-907 (Curis) 7.5.9. FRM-0334 (FORUM Pharmaceuticals) 7.5.10. Mocetinostat (Mirati Therapeutics) 7.5.11. Pracinostat (MEI Pharma) 7.5.12. Resminostat (4SC, Menarini, Yakult Honsha) 7.5.13. SFX-01 (Evgen Pharma) 7.5.14. SHP-141 (TetraLogic Pharmaceuticals) 7.5.15. Tefinostat (Chroma Therapeutics) 8. Publication Analysis 8.1. Chapter Overview 8.2. HDAC Inhibitors: Publications 8.3. Publication Analysis: Quarterly Distribution 8.4. Publication Analysis: Distribution by HDAC Inhibitor Class 8.5. Publication Analysis: Distribution by Drugs Studied 8.6. Publication Analysis: Distribution by Therapeutic Area 8.7. Publication Analysis: Distribution by Journals 8.8. Publication Analysis: Distribution by Phase of Development 8.9. Publication Analysis: Distribution by Type of Therapy 9. Social Media: Emerging Trends 9.1. Chapter Overview 9.1.1. Trends on Twitter 9.1.2. Trends on Facebook 10. Conclusion 10.1. The Pipeline is Healthy with Several Molecules in Preclinical Stages of Development 10.2. HDAC Inhibitors Cater to a Wide Spectrum of Disease Areas 10.3. Class Specific HDAC Inhibitors Have Been Explored for a More Targeted Approach 10.4. The Interest is Gradually Rising Amongst Both Industry and Non-Industry Players 10.5. Supported by a Robust Preclinical Pipeline, HDAC Inhibitors are Expected to Emerge as A Multi-Billion Dollar Market 11. Interview Transcripts 11.1. Chapter Overview 11.2. Dr. Simon Kerry, CEO, Karus Therapeutics 11.3. Dr. James Christensen, CSO and Senior VP, Mirati Therapeutics 11.4. Dr. Hyung J. Chun, MD, FAHA, Associate Professor of Medicine, Yale School of Medicine 12. Appendix 1: Tabulated Data 13. Appendix 2: List Of Companies And Organizations Companies Mentioned - 4SC - AACR - AbbVie - Acceleron Pharma - Acetylon Pharmaceuticals - Active Biotech - Agios Pharmaceuticals - ASH - Arno Therapeutics - Astellas Pharma - Bayer Schering Pharma - Baylor College of Medicine - BioMarin - Bionor Immuno - bluebird bio - Case Comprehensive Cancer Center - Celera Genomics - Celgene - Celleron Therapeutics - Centre de Recherche en Cancérologie - CETYA Therapeutics - CHDI Foundation - Chipscreen Biosciences - Chong Kun Dang Pharmaceutical - Chroma Therapeutics - Croix-Rousse Hospital - CrystalGenomics - Curis - DAC - Diaxonhit - DNA Therapeutics - Duke University - ECOG-ACRIN Cancer Research Group - Eddingpharm - Eisai - Epizyme - Errant Gene Therapeutics - European Calcified Tissue Society - Evgen Pharma - FORMA Therapeutics - FORUM Pharmaceuticals - Fudan University - Genentech - Genextra - Gilead - Gloucester Pharmaceuticals - GNT Biotech - GSK - Harvard Medical School - Henan Cancer Hospital - HUYA Biosciences - Ikerchem - Imperial College London - In2Gen - International Bone and Mineral Society - Israel Cancer Association and Bar Ilan University - Italfarmaco - Johnson and Johnson - Kalypsys - Karus Therapeutics - King's College, University of London - Kyoto Prefectural University of Medicine - Kyoto University - Kyowa Hakko Kirin - Leukemia and Lymphoma Society - Lymphoma Academic Research Organization - Massachusetts General Hospital - Mayo Clinic - MedImmune - MEI Pharma - Memorial Sloan-Kettering Cancer Center - Menarini - Merck - MethylGene - Mirati Therapeutics - Morphosys - Mundipharma-EDO - National Brain Research Centre - National Comprehensive Cancer Network - National Taiwan University - NCI - Novartis - NuPotential - Oceanyx Pharma - Oncolys Biopharma - Onxeo - Onyx - Orchid Pharma - Paterson Institute for Cancer Research - Pfizer - Pharmacyclics - Pharmion Corporation - Quimatryx - Quintiles - Repligen - Respiratorius - Roche - Rodin Therapeutics - Royal Veterinary College, University of London - Ruijin Hospital - S*Bio - Sarcoma Alliance for Research through Collaboration - Seattle Genetics - Servier Canada - Shape Pharmaceuticals - Sidney Kimmel Comprehensive Cancer Center - Sigma Tau Pharmaceuticals - Signal Rx - SpeBio - Spectrum Pharmaceuticals - Stanley Center for Psychiatric Research - Sutro Biopharma - Syndax Pharmaceuticals - Synovo GmbH - Taipei Medical University - TetraLogic Pharmaceuticals - University of Liverpool - University of Messina - University of Miami - Vanderbilt University School of Medicine - Ventana Medical Systems - Vilnius University - Yakult Honsha - Yale University - Yonsei University College of Medicine For more information about this report visit http://www.researchandmarkets.com/research/srvj3j/hdac_inhibitors


Sewal A.S.,U.S. National Institute on Aging | Sewal A.S.,Mount Sinai School of Medicine | Patzke H.,FORUM Pharmaceuticals | Perez E.J.,U.S. National Institute on Aging | And 7 more authors.
Journal of Neuroscience | Year: 2015

The therapeutic potential of histone deacetylase inhibitor (HDACi) treatment has attracted considerable attention in the emerging area of cognitive neuroepigenetics. The possibility that ongoing cognitive experience importantly regulates the cell biological effects of HDACi administration, however, has not been systematically examined. In an initial experiment addressing this issue, we tested whether water maze training influences the gene expression response to acute systemic HDACi administration in the young adult rat hippocampus. Training powerfully modulated the response to HDACi treatment, increasing the total number of genes regulated to nearly 3000, including many not typically linked to neural plasticity, compared with < 300 following HDACi administration alone. Although water maze training itself also regulated nearly 1800 genes, the specificmRNAs,gene networks, and biological pathways involved were largely distinct when the same experience was provided together with HDACi administration. Next, we tested whether the synaptic protein response to HDACi treatment is similarly dependent on recent cognitive experience, and whether this plasticity is altered in aged rats with memory impairment. Whereas synaptic protein labeling in the young hippocampus was selectively increased when HDACi administration was provided in conjunction with water maze training, combined treatment had no effect on synaptic proteins in the aged hippocampus. Our findings indicate that ongoing experience potently regulates the molecular consequences of HDACi treatment and that the interaction of recent cognitive experience with histone acetylation dynamics is disrupted in the aged hippocampus. © 2015 the authors.

Loading FORUM Pharmaceuticals collaborators
Loading FORUM Pharmaceuticals collaborators