Forest Research Institute of Baden Wuerttemberg FVA

Freiburg, Germany

Forest Research Institute of Baden Wuerttemberg FVA

Freiburg, Germany

Time filter

Source Type

Steyer K.,Senckenberg Institute | Steyer K.,Goethe University Frankfurt | Kraus R.H.S.,Senckenberg Institute | Kraus R.H.S.,University of Konstanz | And 28 more authors.
Conservation Genetics | Year: 2016

The European wildcat, Felis silvestris silvestris, serves as a prominent target species for the reconnection of central European forest habitats. Monitoring of this species, however, appears difficult due to its elusive behaviour and the ease of confusion with domestic cats. Recently, evidence for multiple wildcat occurrences outside its known distribution has accumulated in several areas across Central Europe, questioning the validity of available distribution data for this species. Our aim was to assess the fine-scale distribution and genetic status of the wildcat in its central European distribution range. We compiled and analysed genetic samples from roadkills and hundreds of recent hair-trapping surveys and applied phylogenetic and genetic clustering methods to discriminate wild and domestic cats and identify population subdivision. 2220 individuals were confirmed as either wildcat (n = 1792) or domestic cat (n = 342), and the remaining 86 (3.9 %) were identified as hybrids between the two. Remarkably, genetic distinction of domestic cats, wildcats and their hybrids was only possible when taking into account the presence of two highly distinct genetic lineages of wildcats, with a suture zone in central Germany. 44 % of the individual wildcats where sampled outside the previously published distribution. Our analyses confirm a relatively continuous spatial presence of wildcats across large parts of the study area in contrast to previous analyses indicating a highly fragmented distribution. Our results suggest that wildcat conservation and management should take advantage of the higher than previously assumed dispersal potential of wildcats, which may use wildlife corridors very efficiently. © 2016 The Author(s)


Rutishauser M.D.,University of Bern | Bontadina F.,University of Bern | Bontadina F.,Urban Ecology and Wildlife Research | Bontadina F.,Swiss Federal Institute of forest | And 5 more authors.
Diversity and Distributions | Year: 2012

Aim: The discovery of cryptic species poses new challenges for species conservation. Species distributions and conservation status have to be re-evaluated, and the ecological requirements within the species complex have to be re-assessed to recommend adequate conservation guidelines. The recent discovery in Central Europe of the cryptic bat species Plecotus macrobullaris (Kuzjakin 1965) calls for a new appraisal of all three Plecotus species in that area. Location: Switzerland. Methods: Using mostly DNA-identified records, we investigated the environmental niches (ecological niche factor analysis) of the three long-eared bat species at the landscape scale and modelled their potential distributions. Discriminant analysis was used for interspecific niche comparisons. Results: The occurrence of all three species was best explained by proximity to rural settlements and warm summer temperature. Plecotus auritus (Linnaeus, 1758) was positively associated with transition zones from forests to other habitats within heterogeneous landscapes; Plecotus austriacus (J. Fischer, 1829) was more frequently found in orchards and vineyards. Plecotus macrobullaris was linked mostly with deciduous forests. P. auritus had the broadest niche, with occurrence predicted in most forested regions throughout Switzerland. The slightly narrower niche of P. macrobullaris mainly encompassed areas in the Central and Southern Alps. P. austriacus showed a very narrow niche and was predicted mainly in the lowlands, with its habitat requirements overlapping those of P. macrobullaris. Although a range overlap was predicted between P. austriacus and P. macrobullaris, current observations suggest a mostly parapatric distribution in Switzerland. Main conclusions: The projected distributions confirm previous knowledge for P. auritus, but shed new light on the other two species. In contrast to the newly discovered P. macrobullaris, which is actually widespread in the Southern Alps of Switzerland, P. austriacus is restricted to warmer cultivated lowlands and thus may have suffered from recent major land use changes. We suggest reclassifying P. austriacus to a higher conservation status. © 2012 Blackwell Publishing Ltd.


Wurstlin S.,Forest Research Institute of Baden Wuerttemberg FVA | Segelbacher G.,Albert Ludwigs University of Freiburg | Streif S.,Forest Research Institute of Baden Wuerttemberg FVA | Kohnen A.,Forest Research Institute of Baden Wuerttemberg FVA
Conservation Genetics | Year: 2016

The European wildcat (Felis silvestris silvestris) underwent a severe decline across Europe in the early twentieth century. Remaining populations are often very small and isolated, though there are indications that wildcat populations are currently expanding their range. However, linear landscape elements such as rivers and roads are thought to present barriers to dispersal, inhibiting gene flow and, thus, affecting the recolonization process. In this study, we investigated the fine-scale genetic structure of wildcats in the Upper Rhine Valley. We specifically analysed wildcats on both sides of the Rhine River by genotyping 55 individual wildcats, using 20 microsatellite loci. Genetic differentiation was weak and positive spatial autocorrelation was found up to a distance of 10 km (females: 5 km, males: 10 km) indicating substantial gene flow among sampling sites. High levels of gene flow, even across the Rhine River, indicated that the water body itself does not necessarily have a strong barrier effect, which is in contrast to other studies. Our findings could best be explained by the populations’ history, a local extinction east of the River Rhine and a current ongoing population expansion. Our study highlights that potential barriers, such as rivers, may have different effects in different local wildcat populations and that the history of the populations is important to interpret genetic results. As many wildcats still occur in isolated and patchy forest fragments, maintaining connectivity between populations is crucial to ensure their viability in the long term. © 2016 Springer Science+Business Media Dordrecht


Braunisch V.,Forest Research Institute of Baden Wuerttemberg FVA | Braunisch V.,University of Bern | Segelbacher G.,Albert Ludwigs University of Freiburg | Hirzel A.H.,University of Lausanne
Molecular Ecology | Year: 2010

Functional connectivity between spatially disjoint habitat patches is a key factor for the persistence of species in fragmented landscapes. Modelling landscape connectivity to identify potential dispersal corridors requires information about those landscape features affecting dispersal. Here we present a new approach using spatial and genetic data of a highly fragmented population of capercaillie (Tetrao urogallus) in the Black Forest, Germany, to investigate effects of landscape structure on gene flow and to parameterize a spatially explicit corridor model for conservation purposes. Mantel tests and multiple regressions on distance matrices were employed to detect and quantify the effect of different landscape features on relatedness among individuals, while controlling for the effect of geographic distance. We extrapolated the results to an area-wide landscape permeability map and developed a new corridor model that incorporates stochasticity in simulating animal movement. The model was evaluated using both a partition of the data previously set apart and independent observation data of dispersing birds. Most land cover variables (such as coniferous forest, forest edges, agricultural land, roads, settlements) and one topographic variable (topographic exposure) were significantly correlated with gene flow. Although inter-individual relatedness inherently varies greatly and the variance explained by geographic distance and landscape structure was low, the permeability map and the corridor model significantly explained relatedness in the validation data and the spatial distribution of dispersing birds. Thus, landscape structure measurably affected within-population gene flow in the study area. By converting these effects into spatially explicit information our model enables localizing priority areas for the preservation or restoration of metapopulation connectivity. © 2010 Blackwell Publishing Ltd.


Coppes J.,Forest Research Institute of Baden Wuerttemberg FVA | Coppes J.,Van Hall Larenstein University of Applied Sciences | Braunisch V.,Forest Research Institute of Baden Wuerttemberg FVA | Braunisch V.,University of Bern
Wildlife Biology | Year: 2013

Outdoor recreation, particularly in winter, causes pressure on wildlife. While many species seem to adjust well to predictable on-trail recreation activities, unpredictable off-trail activities are considered harmful. Measures to minimise human disturbance require the identification of 'conflict-sites' where human activities are likely to interfere with the requirements of wildlife. We used winter recreation data combined with spatial modelling to predict where recreationists move from marked trails into wildlife habitats in winter and to determine the environmental factors that trigger this off-trail behaviour. We surveyed marked winter trails in the southern Black Forest, Germany, by foot or ski for tracks of people leaving the trail, with three types of recreationists distinguished: hikers, snowshoe users and cross-country skiers. Using a maximum entropy approach, the probability of leaving the trail was modelled as a function of topographic, forest structure and tourism infrastructure variables. By combining the results with previously mapped habitat information of two disturbance sensitive species, the capercaillie Tetrao urogallus and the red deer Cervus elaphus, we identified conflict sites where mitigation measures would be most effective. All models were effective in predicting the locations where people left the trails and the three types of recreationists showed a similar pattern: the presence of closed summer trails and signposts along these trails proved to be the factors most strongly affecting the probability of leaving marked trails, followed by slope, which was negatively correlated with the probability of going off-trail. People leaving directly into the forest, not using a summer trail, were most positively influenced by the successional stages 'regeneration' and 'old forest', whereas increasing canopy cover decreased the probability of leaving the trail. The models were extrapolated to all marked trails in the study area. Locations with a high probability of people leaving the trails were identified and intersected with the previously mapped key habitats of the two wildlife species, thereby showing the locations where leaving the trail would be linked with a high potential of human-wildlife conflict. By indicating what triggers people to leave the trails, and identifying the critical locations, our results contribute to the determination of adequate management measures. © Wildlife Biology, NKV.


Braunisch V.,University of Bern | Braunisch V.,Forest Research Institute of Baden Wuerttemberg FVA | Home R.,Research Institute of Organic Agriculture | Pellet J.,University of Bern | And 2 more authors.
Biological Conservation | Year: 2012

A wide gap between research and practice hinders the implementation of biodiversity conservation recommendations. As subjects studied by conservation scientists might bear little relevance for implementation, surveys have identified and framed research questions relevant to conservation in practice. No attempts to prioritize these questions have yet been published, although it would provide invaluable information for steering practice-oriented research. We surveyed Swiss conservation practitioners with the aim of identifying and prioritizing their needs in terms of useful scientific information. A first inductive survey of a selected subgroup generated a list of relevant research questions that were reformulated to be generalizable to all main Swiss ecosystems. The resulting compiled questionnaire was submitted through an online platform to all officially registered practitioners who were asked to rate the importance to their own field of expertise of each question, to nominate possibly omitted, subsidiary questions and to specify "hot topics" typically relevant to their field. Most respondents operated in several ecosystems, which facilitated the identification of general and ecosystem-related research priorities. Generally, questions related to economic, societal and stakeholder conflicts were found to be more important than conceptual questions. Questions concerning single-species were rated higher than ecosystem-related questions. Subsidiary questions and hot topics were subsumed and integrated into a final catalogue of research questions. By identifying and framing scientific questions of both general practical relevance and specific regional importance, this study provides a practice-oriented research agenda and a basis for developing conjoint activities with the intention to bridge the gap between conservation science and action. © 2012 Elsevier Ltd.


Braunisch V.,University of Bern | Braunisch V.,Forest Research Institute of Baden Wuerttemberg FVA | Patthey P.,University of Bern | Arlettaz R.,University of Bern | Arlettaz R.,Swiss Ornithological Institute
Ecological Applications | Year: 2011

Outdoor winter recreation exerts an increasing pressure upon mountain ecosystems, with unpredictable, free-ranging activities (e.g., ski mountaineering, snowboarding, and snowshoeing) representing a major source of stress for wildlife. Mitigating anthropogenic disturbance requires the spatially explicit prediction of the interference between the activities of humans and wildlife. We applied spatial modeling to localize conflict zones between wintering Black Grouse (Tetrao tetrix), a declining species of Alpine timberline ecosystems, and two free-ranging winter sports (off-piste skiing [including snow-boarding] and snowshoeing). Track data (snow-sports and birds' traces) obtained from aerial photographs taken over a 585-km transect running along the timberline, implemented within a maximum entropy model, were used to predict the occurrence of snow sports and Black Grouse as a function of landscape characteristics. By modeling Black Grouse presence in the theoretical absence of free-ranging activities and ski infrastructure, we first estimated the amount of habitat reduction caused by these two factors. The models were then extrapolated to the altitudinal range occupied by Black Grouse, while the spatial extent and intensity of potential conflict were assessed by calculating the probability of human-wildlife co-occurrence. The two snow-sports showed different distribution patterns. Skiers' occurrence was mainly determined by ski-lift presence and a smooth terrain, while snowshoers' occurrence was linked to hiking or skiing routes and moderate slopes. Wintering Black Grouse avoided ski lifts and areas frequented by free-ranging snow sports. According to the models, Black Grouse have faced a substantial reduction of suitable wintering habitat along the timberline transect: 12% due to ski infrastructure and another 16% when adding free-ranging activities. Extrapolating the models over the whole study area results in an overall habitat loss due to ski infrastructure of 10%, while there was a .10% probability of human-wildlife encounters on 67% of the remaining area of suitable wintering habitat. Only 23% of the wintering habitat was thus free of anthropogenic disturbance. By identifying zones of potential conflict, while rating its relative intensity, our model provides a powerful tool to delineate and prioritize areas where wildlife winter refuges and visitor steering measures should be implemented. © 2011 by the Ecological Society of America.


Braunisch V.,University of Bern | Braunisch V.,Forest Research Institute of Baden Wuerttemberg FVA | Patthey P.,Canton de Vaud | Arlettaz R.,University of Bern | Arlettaz R.,Swiss Ornithological Institute
PLoS ONE | Year: 2016

In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial allocation of management resources in geographic regions where shrub encroachment represents a major biodiversity conservation issue. © 2016 Braunisch et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Cerbu G.A.,Forest Research Institute of Baden Wuerttemberg FVA | Swallow B.M.,University of Alberta | Thompson D.Y.,University of Alberta
Environmental Science and Policy | Year: 2011

Mechanisms that support reduced emissions from deforestation and forest degradation (REDD/REDD+) have potential to counteract a large share of global greenhouse gas emissions if implemented effectively across the tropics. In 2007 the conference of parties to the United Nations Framework Convention on Climate Change called upon parties and international organizations to promote REDD through investments in capacity building and demonstration activities. This prompted many new actors to become involved in REDD activities at a variety of locations and scales. A global survey of REDD activities was undertaken in 2009 to enable better understanding of the intensity and geographic distribution of these activities. Existing compilations, literature review, web-based sources, face-to-face and telephone interviews, and e-mail questionnaires were used to compile data for the inventory. Inter alia, data were collected on the location of activities and official and unofficial factors influencing location choices. Inventory data were combined with secondary data to estimate a statistical count model (Poisson) of factors affecting the number of REDD activities undertaken in the 64 developing countries that experienced significant emissions from deforestation. The results show that there were at least 79 REDD readiness activities and 100 REDD demonstration activities as of October 2009. Of these, the largest shares of REDD readiness and demonstration activities were implemented in Indonesia (7 and 15 respectively) and Brazil (4 and 13 respectively), countries widely agreed to have the greatest potential for reducing forest-based emissions. The statistical results found no national characteristic to have a statistically-significant effect on the number of REDD readiness activities, but five national characteristics to have significant effects on the number of REDD demonstration projects. Baseline CO2 emissions, forest carbon stock, number of threatened species, quality of governance, and region all had significant effects. The results reveal the importance of biodiversity and good governance, and the relative unimportance of human need and opportunity cost of land. The results also reveal a bias against Africa and toward Latin America. Unless this pattern is countered, REDD and REDD+ may have geographic biases that undermine its broad political support. © 2010 Elsevier Ltd.


PubMed | Forest Research Institute of Baden Wuerttemberg FVA
Type: Comparative Study | Journal: Molecular ecology | Year: 2010

Functional connectivity between spatially disjoint habitat patches is a key factor for the persistence of species in fragmented landscapes. Modelling landscape connectivity to identify potential dispersal corridors requires information about those landscape features affecting dispersal. Here we present a new approach using spatial and genetic data of a highly fragmented population of capercaillie (Tetrao urogallus) in the Black Forest, Germany, to investigate effects of landscape structure on gene flow and to parameterize a spatially explicit corridor model for conservation purposes. Mantel tests and multiple regressions on distance matrices were employed to detect and quantify the effect of different landscape features on relatedness among individuals, while controlling for the effect of geographic distance. We extrapolated the results to an area-wide landscape permeability map and developed a new corridor model that incorporates stochasticity in simulating animal movement. The model was evaluated using both a partition of the data previously set apart and independent observation data of dispersing birds. Most land cover variables (such as coniferous forest, forest edges, agricultural land, roads, settlements) and one topographic variable (topographic exposure) were significantly correlated with gene flow. Although inter-individual relatedness inherently varies greatly and the variance explained by geographic distance and landscape structure was low, the permeability map and the corridor model significantly explained relatedness in the validation data and the spatial distribution of dispersing birds. Thus, landscape structure measurably affected within-population gene flow in the study area. By converting these effects into spatially explicit information our model enables localizing priority areas for the preservation or restoration of metapopulation connectivity.

Loading Forest Research Institute of Baden Wuerttemberg FVA collaborators
Loading Forest Research Institute of Baden Wuerttemberg FVA collaborators