FORENAP

Rouffach, France
Rouffach, France

Time filter

Source Type

Vanello N.,University of Pisa | Guidi A.,University of Pisa | Gentili C.,University of Pisa | Werner S.,FORENAP | And 4 more authors.
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS | Year: 2012

Bipolar disorders are characterized by an unpredictable behavior, resulting in depressive, hypomanic or manic episodes alternating with euthymic states. A multi-parametric approach can be followed to estimate mood states by integrating information coming from different physiological signals and from the analysis of voice. In this work we propose an algorithm to estimate speech features from running speech with the aim of characterizing the mood state in bipolar patients. This algorithm is based on an automatic segmentation of speech signals to detect voiced segments, and on a spectral matching approach to estimate pitch and pitch changes. In particular average pitch, jitter and pitch standard deviation within each voiced segment, are estimated. The performances of the algorithm are evaluated on a speech database, which includes an electroglottographic signal. A preliminary analysis on subjects affected by bipolar disorders is performed and results are discussed. © 2012 IEEE.


Tassi P.,University of Strasbourg | Saremi M.,University of Strasbourg | Schimchowitsch S.,University of Strasbourg | Eschenlauer A.,University of Strasbourg | And 2 more authors.
European Journal of Applied Physiology | Year: 2010

The aim of this study was to investigate the effects of nocturnal railway noise on cardiovascular reactivity in young (25.8 ± 2.6 years) and middle-aged (52.2 ± 2.5 years) adults during sleep. Thirty-eight subjects slept three nights in the laboratory at 1-week interval. They were exposed to 48 randomized pass-bys of Freight, Passenger and Automotive trains either at an 8-h equivalent sound level of 40 dBA (Moderate) and 50 dBA (High) or at a silent Control night. Heart rate response (HRR), heart response amplitude (HRA), heart response latency (HRL) and finger pulse response (FPR), finger pulse amplitude (FPA) and finger pulse latency (FPL) were recorded to measure cardiovascular reactivity after each noise onset and for time-matched pseudo-noises in the control condition. Results show that Freight trains produced the highest cardiac response (increased HRR, HRA and HRL) compared to Passenger and Automotive. But the vascular response was similar whatever the type of train. Juniors exhibited an increased HRR and HRA as compared to seniors, but there was no age difference on vasoconstriction, except a shorter FPL in seniors. Noise level produced dose-dependent effects on all the cardiovascular indices. Sleep stage at noise occurrence was ineffective for cardiac response, but FPA was reduced when noise occurred during REM sleep. In conclusion, our study is in favor of an important impact of nocturnal railway noise on the cardiovascular system of sleeping subjects. In the limit of the samples studied, Freight trains are the most harmful, probably more because of their special length (duration) than because of their speed (rise time). © 2009 Springer-Verlag.


Tassi P.,University of Strasbourg | Rohmer O.,University of Strasbourg | Schimchowitsch S.,University of Strasbourg | Eschenlauer A.,French National Center for Scientific Research | And 4 more authors.
Environment International | Year: 2010

Very few studies were devoted to permanent effects of nocturnal railway noise on sleep and cardiovascular reactivity. We investigated the effects of nocturnal railway noise on sleep and cardiovascular response in young and middle-aged adults living for many years either near a railway track or in a quiet area. Forty subjects (50% males) divided into two age groups (juniors: 26.2 ± 3.6 and seniors: 56.2 ± 4.2) participated in this experiment. Half of them lived near a railway track (RW group: 2.6 to 19. years) and the other half in a quiet environment (QE group: 8.1 to 14.2. years). After an adaptation night, all subjects underwent two nights in the laboratory: one control night and one noisy night (30 by-passes of a freight train). Sleep and cardiovascular modifications were assessed in response to noise. Sleep fragmentation indices were lower in RW subjects compared to QE whatever their age. In response to noise, there was a higher cardiovascular response rate to noise in RW juniors and a lower cardiovascular response rate in RW seniors compared to their age-paired QE counterparts. In conclusion, permanent exposure to nocturnal railway noise leads to decreased sleep fragmentation and to cardiovascular habituation. It is suggested that during the initial period experienced by residents living near railway tracks, nocturnal railway noise could induce a sensitization process on the autonomic response to noise reflecting a startle/defense reflex due to its functional significance, which progressively turns to habituation in the long-term if no adverse effect is experienced. © 2010 Elsevier Ltd.


Paradiso R.,SMARTEX S.r.l | Faetti T.,SMARTEX S.r.l | Werner S.,FORENAP
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS | Year: 2011

Wearable monitoring systems based on Smart Fibers and Interactive Textile (SFIT) platforms combine imperceptible sensing and computing functions with an interactive communication network. The integration into clothes of bio-potential sensors for health monitoring provides daily physiological parameters through a continuous, personalized, self-made detection of vital signs and the tracking of behavioral indicators of the subject. SFIT platforms can be used unobtrusively into the routinely daily activity to perform remote monitoring of persons in different circumstances and situations: during controlled exercises and diagnostic procedures as a biofeedback tool, during the usual daily life, during sleep or even to monitor behavioral indexes and mood disorders. Treatment of stress may include also training in cognitive-behavioral skills. Moreover, physiological signs and behavioral monitoring based on a multivariable approach leads to an enhanced sensitivity and specificity of these systems for the prediction of critical events. This paper presents two applications: a platform used in the frame of PSYCHE project, based on textile platforms and portable sensing devices for the long term and short term acquisition of data from patients affected by mood disorders and a platform addressing healthy subjects, based on biofeedback methodology, designed for the training of professional drivers named Mental Bio. © 2011 IEEE.


Pross N.,Forenap | Demazieres A.,Forenap | Girard N.,Forenap | Barnouin R.,Forenap | And 4 more authors.
British Journal of Nutrition | Year: 2013

The present study evaluated, using a well-controlled dehydration protocol, the effects of 24Â h fluid deprivation (FD) on selected mood and physiological parameters. In the present cross-over study, twenty healthy women (age 25 (se 0·78) years) participated in two randomised sessions: FD-induced dehydration v. a fully hydrated control condition. In the FD period, the last water intake was between 18.00 and 19.00 hours and no beverages were allowed until 18.00 hours on the next day (23-24Â h). Water intake was only permitted at fixed periods during the control condition. Physiological parameters in the urine, blood and saliva (osmolality) as well as mood and sensations (headache and thirst) were compared across the experimental conditions. Safety was monitored throughout the study. The FD protocol was effective as indicated by a significant reduction in urine output. No clinical abnormalities of biological parameters or vital signs were observed, although heart rate was increased by FD. Increased urine specific gravity, darker urine colour and increased thirst were early markers of dehydration. Interestingly, dehydration also induced a significant increase in saliva osmolality at the end of the 24Â h FD period but plasma osmolality remained unchanged. The significant effects of FD on mood included decreased alertness and increased sleepiness, fatigue and confusion. The most consistent effects of mild dehydration on mood are on sleep/wake parameters. Urine specific gravity appears to be the best physiological measure of hydration status in subjects with a normal level of activity; saliva osmolality is another reliable and non-invasive method for assessing hydration status. Copyright © The Authors 2012. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial- ShareAlike licence <Â http://creativecommons.org/licenses/by-nc-sa/3.0/ >. The written permission of Cambridge University Press must be obtained for commercial re-use..


Pross N.,Forenap | Demazieres A.,Forenap | Girard N.,Forenap | Barnouin R.,Forenap | And 4 more authors.
PLoS ONE | Year: 2014

Objective: To evaluate the effects of a change in water intake on mood and sensation in 22 habitual high-volume (HIGH; 2- 4 L/d) and 30 low-volume (LOW; <1.2 L/d) drinkers who were asked to respectively decrease and increase their daily water intake. Method: During baseline HIGH consumed 2.5 L and LOW 1 L of water/day. During 3 controlled intervention days HIGH's water intake was restricted to 1 L/day whereas LOW's was increased to 2.5 L water/day. Several mood scales (Bond & Lader Visual Analog Scale (VAS), Profile of Mood States, Karolinska Sleepiness Scale, Thirst & Emotional VAS) were administered at different time points during the study. ANOVA including intervention, time point and intervention by time point as fixed effects on mean values (i.e.; baseline data vs. mean of 3 intervention days) for each mood scale was performed. Results: At baseline HIGH and LOW were comparable in mood state, except for thirst scores (estimate = 17.16, p<0.001) and POMS depression-dejection scores (estimate = 0.55, p<0.05) which were both higher in the HIGH vs. LOW. In HIGH the restricted water intake resulted in a significant increase in thirst (p<0.001) and a decrease in contentedness (p<0.05), calmness (p<0.01), positive emotions (p<0.05) and vigor/activity (p<0.001). In LOW, increased water consumption resulted in a significant decrease in fatigue/inertia (p<0.001), confusion/bewilderment (p = 0.05) and thirst (p<0.001) and a trend to lower sleepiness (p = 0.07) compared to baseline. Conclusion: Increasing water intake has beneficial effects in LOW, especially sleep/wake feelings, whereas decreasing water intake has detrimental effects on HIGH's mood. These deleterious effects in HIGH were observed in some sleep/wake moods as well as calmness, satisfaction and positive emotions. © 2014 Pross et al.


Sanacora G.,Yale University | Smith M.A.,Astrazeneca | Pathak S.,Astrazeneca | Su H.-L.,Astrazeneca | And 3 more authors.
Molecular Psychiatry | Year: 2014

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) channel blocker, has been found to induce rapid and robust antidepressant-like effects in rodent models and in treatment-refractory depressed patients. However, the marked acute psychological side effects of ketamine complicate the interpretation of both preclinical and clinical data. Moreover, the lack of controlled data demonstrating the ability of ketamine to sustain the antidepressant response with repeated administration leaves the potential clinical utility of this class of drugs in question. Using quantitative electroencephalography (qEEG) to objectively align doses of a low-trapping NMDA channel blocker, AZD6765 (lanicemine), to that of ketamine, we demonstrate the potential for NMDA channel blockers to produce antidepressant efficacy without psychotomimetic and dissociative side effects. Furthermore, using placebo-controlled data, we show that the antidepressant response to NMDA channel blockers can be maintained with repeated and intermittent drug administration. Together, these data provide a path for the development of novel glutamatergic-based therapeutics for treatment-refractory mood disorders. © 2014 Macmillan Publishers Limited All rights reserved.


PubMed | FORENAP, Yale University and Astrazeneca
Type: Clinical Trial, Phase I | Journal: Molecular psychiatry | Year: 2014

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) channel blocker, has been found to induce rapid and robust antidepressant-like effects in rodent models and in treatment-refractory depressed patients. However, the marked acute psychological side effects of ketamine complicate the interpretation of both preclinical and clinical data. Moreover, the lack of controlled data demonstrating the ability of ketamine to sustain the antidepressant response with repeated administration leaves the potential clinical utility of this class of drugs in question. Using quantitative electroencephalography (qEEG) to objectively align doses of a low-trapping NMDA channel blocker, AZD6765 (lanicemine), to that of ketamine, we demonstrate the potential for NMDA channel blockers to produce antidepressant efficacy without psychotomimetic and dissociative side effects. Furthermore, using placebo-controlled data, we show that the antidepressant response to NMDA channel blockers can be maintained with repeated and intermittent drug administration. Together, these data provide a path for the development of novel glutamatergic-based therapeutics for treatment-refractory mood disorders.


PubMed | Forenap
Type: Clinical Trial | Journal: The British journal of nutrition | Year: 2013

The present study evaluated, using a well-controlled dehydration protocol, the effects of 24 h fluid deprivation (FD) on selected mood and physiological parameters. In the present cross-over study, twenty healthy women (age 25 (SE 0.78) years) participated in two randomised sessions: FD-induced dehydration v. a fully hydrated control condition. In the FD period, the last water intake was between 18.00 and 19.00 hours and no beverages were allowed until 18.00 hours on the next day (23-24 h). Water intake was only permitted at fixed periods during the control condition. Physiological parameters in the urine, blood and saliva (osmolality) as well as mood and sensations (headache and thirst) were compared across the experimental conditions. Safety was monitored throughout the study. The FD protocol was effective as indicated by a significant reduction in urine output. No clinical abnormalities of biological parameters or vital signs were observed, although heart rate was increased by FD. Increased urine specific gravity, darker urine colour and increased thirst were early markers of dehydration. Interestingly, dehydration also induced a significant increase in saliva osmolality at the end of the 24 h FD period but plasma osmolality remained unchanged. The significant effects of FD on mood included decreased alertness and increased sleepiness, fatigue and confusion. The most consistent effects of mild dehydration on mood are on sleep/wake parameters. Urine specific gravity appears to be the best physiological measure of hydration status in subjects with a normal level of activity; saliva osmolality is another reliable and non-invasive method for assessing hydration status.


PubMed | FORENAP
Type: Journal Article | Journal: Dialogues in clinical neuroscience | Year: 2011

Magnetic resonance imaging (MRI) is widely used to image brain in vivo both in studies in animal models and for human diagnosis. A large part of the value of MRI is due to the fact that soft tissue contrast is enhanced by the substantial variation in the T(1) and T(2) relaxation times between tissues. It may be possible to use an alternative approach, which does not rely on the absolute measurement of relaxation times. Generally speaking, textures are complex visual patterns composed of entities, or subpatterns, that have characteristic brightness, color, slope, size, etc. Thus, texture can be regarded as a similarity grouping in an image. The properties of the local subpattern give rise to the perceived lightness, uniformity, density, roughness, regularity, linearity, frequency, phase, directionality, coarseness, randomness, fineness, smoothness, and granulation. The purpose here is to illustrate how texture analysis can be used in animal models and in human clinical applications, as well as in the search for further pharmacological applications in humans. Thus, this article summarzes three different MRI studies in (i) rats, using the lipocarpine epileptic rat model as an animal model; (ii) patients with Alzheimers disease; and (iii) patients with schizophrenia.

Loading FORENAP collaborators
Loading FORENAP collaborators