Entity

Time filter

Source Type

Seoul, South Korea

Kim J.-S.,Hankuk University of foreign Studies | Koo B.-S.,ForBioKorea Co. | Hyun H.-H.,Hankuk University of foreign Studies | Lee H.-C.,Hankuk University of foreign Studies
Microbial Cell Factories | Year: 2015

Background: Rational engineering studies for deoxycytidine production were initiated due to low intracellular levels and tight regulation. To achieve high-level production of deoxycytidine, a useful precursor of decitabine, genes related to feed-back inhibition as well as the biosynthetic pathway were engineered. Additionally, we predicted the impact of individual gene expression levels on a complex metabolic network by microarray analysis. Based on these findings, we demonstrated rational metabolic engineering strategies capable of producing deoxycytidine. Results: To prepare the deoxycytidine producing strain, we first deleted 3 degradation enzymes in the salvage pathway (deoA, udp, and deoD) and 4 enzymes involved in the branching pathway (dcd, cdd, codA and thyA) to completely eliminate degradation of deoxycytidine. Second, purR, pepA and argR were knocked out to prevent feedback inhibition of CarAB. Third, to enhance influx to deoxycytidine, we investigated combinatorial expression of pyrG, T4 nrdCAB and yfbR. The best strain carried pETGY (pyrG-yfbR) from the possible combinatorial plasmids. The resulting strain showed high deoxycytidine yield (650 mg/L) but co-produced byproducts. To further improve deoxycytidine yield and reduce byproduct formation, pgi was disrupted to generate a sufficient supply of NADPH and ribose. Overall, in shake-flask cultures, the resulting strain produced 967 mg/L of dCyd with decreased byproducts. Conclusions: We demonstrated that deoxycytidine could be readily achieved by recombineering with biosynthetic genes and regulatory genes, which appeared to enhance the supply of precursors for synthesis of carbamoyl phosphate, based on transcriptome analysis. In addition, we showed that carbon flux rerouting, by disrupting pgi, efficiently improved deoxycytidine yield and decreased byproduct content. © 2015 Kim et al. Source


Kim Y.,University of Seoul | Koo B.-S.,ForBioKorea Co. | Lee H.-C.,ForBioKorea Co. | Yoon Y.,Konkuk University
Canadian Journal of Microbiology | Year: 2015

Isomaltulose, also known as palatinose, is produced by sucrose isomerase and has been highlighted as a sugar substitute due to a number of advantageous properties. For the massive production of isomaltulose, high resistance to sucrose and stability of sucrose isomerase as well as sucrose conversion yields would be critical factors. We describe a series of screening procedures to isolate the mutant strain of Serratia sp. possessing enhanced isomaltulose production with improved stability. The new Serratia sp. isolated from a series of screening procedures allowed us to produce isomaltulose from 60% sucrose solution, with over 90% conversion yield. Moreover, when this strain was immobilized in calcium alginate beads and placed in a medium containing 60% sucrose, it showed over 70% sucrose conversion yields for 30 cycles of repeated-batch reactions. Thus, improved conversion activity and stability of the newly isolated Serratia sp. strain in the present study would be highly valuable for industries related to isomaltulose production. © 2015, NRC Research Press. All rights reserved. Source


Kim J.-S.,ForBioKorea Co. | Kim J.-S.,Hankuk University of foreign Studies | Koo B.-S.,ForBioKorea Co. | Hyun H.-H.,Hankuk University of foreign Studies | And 2 more authors.
Microbial Cell Factories | Year: 2015

Background: Rational engineering studies for deoxycytidine production were initiated due to low intracellular levels and tight regulation. To achieve high-level production of deoxycytidine, a useful precursor of decitabine, genes related to feed-back inhibition as well as the biosynthetic pathway were engineered. Additionally, we predicted the impact of individual gene expression levels on a complex metabolic network by microarray analysis. Based on these findings, we demonstrated rational metabolic engineering strategies capable of producing deoxycytidine. Results: To prepare the deoxycytidine producing strain, we first deleted 3 degradation enzymes in the salvage pathway (deoA, udp, and deoD) and 4 enzymes involved in the branching pathway (dcd, cdd, codA and thyA) to completely eliminate degradation of deoxycytidine. Second, purR, pepA and argR were knocked out to prevent feedback inhibition of CarAB. Third, to enhance influx to deoxycytidine, we investigated combinatorial expression of pyrG, T4 nrdCAB and yfbR. The best strain carried pETGY (pyrG-yfbR) from the possible combinatorial plasmids. The resulting strain showed high deoxycytidine yield (650mg/L) but co-produced byproducts. To further improve deoxycytidine yield and reduce byproduct formation, pgi was disrupted to generate a sufficient supply of NADPH and ribose. Overall, in shake-flask cultures, the resulting strain produced 967mg/L of dCyd with decreased byproducts. Conclusions: We demonstrated that deoxycytidine could be readily achieved by recombineering with biosynthetic genes and regulatory genes, which appeared to enhance the supply of precursors for synthesis of carbamoyl phosphate, based on transcriptome analysis. In addition, we showed that carbon flux rerouting, by disrupting pgi, efficiently improved deoxycytidine yield and decreased byproduct content. © 2015 Kim et al. Source


Kim J.-S.,ForBioKorea Co. | Jeong M.-K.,BioNgene Co. | Koo B.-S.,ForBioKorea Co. | Lee H.-C.,ForBioKorea Co. | Lee H.-C.,BioNgene Co.
Applied and Environmental Microbiology | Year: 2015

A novel thymidine-producing strain of Escherichia coli was prepared by genome recombineering. Eleven genes were deleted by replacement with an expression cassette, and 7 genes were integrated into the genome. The resulting strain, E. coli HLT013, showed a high thymidine yield with a low deoxyuridine content. DNA microarrays were then used to compare the gene expression profiles of HLT013 and its isogenic parent strain. Based on microarray analysis, the pyr biosynthesis genes and 10 additional genes were selected and then expressed in HLT013 to find reasonable candidates for enhancing thymidine yield. Among these, phage shock protein A (PspA) showed positive effects on thymidine production by diminishing redox stress. Thus, we integrated pspA into the HLT013 genome, resulting in E. coli strain HLT026, which produced 13.2 g/liter thymidine for 120 h with fedbatch fermentation. Here, we also provide a basis for new testable hypotheses regarding the enhancement of thymidine productivity and the attainment of a more complete understanding of nucleotide metabolism in bacteria. © 2015, American Society for Microbiology. Source


Kim J.-S.,ForBioKorea Co. | Koo B.-S.,ForBioKorea Co. | Lee H.-C.,ForBioKorea Co.
Genomics Data | Year: 2015

DNA microarrays were used to compare the expression profiles of a thymidine overproducing strain (BLT013) and its isogenic parent, Escherichia coli BL21(DE3), when each was grown under well-defined thymidine production conditions with glycerol as carbon source. Here we describe the experimental procedures and methods in detail to reproduce the results and provide resource to be applied to similar engineering approach (available at Gene Expression Omnibus database under GSE69963). Taken together, the microarray data provide a basis for new testable hypotheses regarding enhancement of thymidine productivity and attaining a more complete understanding of nucleotide metabolism in bacteria. © 2015 . Source

Discover hidden collaborations