Entity

Time filter

Source Type

United States, United States

Klotz J.L.,Forage Animal Production Research Unit
Toxins | Year: 2015

Consumption of feedstuffs contaminated with ergot alkaloids has a broad impact on many different physiological mechanisms that alters the homeostasis of livestock. This change in homeostasis causes an increased sensitivity in livestock to perturbations in the ambient environment, resulting in an increased sensitivity to such stressors. This ultimately results in large financial losses in the form of production losses to livestock producers around the world. This review will focus on the underlying physiological mechanisms that are affected by ergot alkaloids that lead to decreases in livestock production. © 2015 by the authors; licensee MDPI, Basel, Switzerland. Source


Taghavi-Nezhad M.,Bu - Ali Sina University | Alipour D.,Bu - Ali Sina University | Flythe M.D.,Forage Animal Production Research Unit | Zamani P.,Bu - Ali Sina University | Khodakaramian G.,Bu - Ali Sina University
Animal Production Science | Year: 2014

Gas (CO2 and CH4) and ammonia production in the rumen represent major sources of lost carbon and nitrogen, respectively. The essential oils of some plants have been shown to decrease gas and ammonia production by selectively inhibiting rumen microbes. Particularly, those of Zataria multiflora (ZEO; thymol 21%, carvacrol 32%) and Mentha spicata (SEO; carvone 55%) were evaluated in vitro as ruminant-feed additives. The experiments employed mixed rumen microbes and a hyper-ammonia-producing bacterium (HAP) isolated from the rumen of a Mehraban sheep. Both ZEO and SEO decreased in vitro fibre digestibility and also gas production by mixed rumen microbes that were fermenting a typical growing-lamb diet. ZEO decreased ammonia concentration in mixed culture of rumen microbes, but SEO exerted the opposite effect. A bacterial isolate (MT8) was obtained from the rumen of a Mehraban sheep, and the 16S rRNA gene sequence indicated that it was most closely related to Clostridium bifermentans. Isolate MT8 exhibited rapid ammonia production when peptides were the growth substrate, which indicated that MT8 was a HAP. Both oils inhibited the growth and ammonia production of isolate MT8. However, ZEO decreased ammonia production at lower doses, and to a greater degree, than did SEO. These results indicated that both essential oils could potentially be used to modulate rumen fermentation. The detrimental effects on fibre digestion could be problematic in high-forage diets, and this requires further investigation. Isolate MT8 is the first described HAP from the Mehraban sheep rumen. Results on ammonia production by isolate MT8 and mixed rumen microbes indicate differential mode of action of each oil on this parameter. © 2014 CSIRO. Source


Harlow B.E.,University of Kentucky | Lawrence L.M.,University of Kentucky | Hayes S.H.,University of Kentucky | Crum A.,University of Kentucky | And 2 more authors.
PLoS ONE | Year: 2016

Starch from corn is less susceptible to equine small intestinal digestion than starch from oats, and starch that reaches the hindgut can be utilized by the microbiota. The objective of the current study was to examine the effects of starch source on equine fecal microbiota. Thirty horses were assigned to treatments: control (hay only), HC (high corn), HO (high oats), LC (low corn), LO (low oats), and LW (low pelleted wheat middlings). Horses received an all-forage diet (2 wk; d -14 to d -1) before the treatment diets (2 wk; d 1 to 14). Starch was introduced gradually so that horses received 50% of the assigned starch amount (high = 2 g starch/kg BW; low = 1 g starch/kg BW) by d 4 and 100% by d 11. Fecal samples were obtained at the end of the forage-only period (S0; d -2), and on d 6 (S1) and d 13 (S2) of the treatment period. Cellulolytics, lactobacilli, Group D Gram-positive cocci (GPC), lactate-utilizers and amylolytics were enumerated. Enumeration data were log transformed and analyzed by repeated measures ANOVA. There were sample day x treatment interactions (P < 0.0001) for all bacteria enumerated. Enumerations from control horses did not change during the sampling period (P > 0.05). All treatments except LO resulted in increased amylolytics and decreased cellulolytics, but the changes were larger in horses fed corn and wheat middlings (P < 0.05). Feeding oats resulted in increased lactobacilli and decreased GPC (P < 0.05), while corn had the opposite effects. LW had increased lactobacilli and GPC (P < 0.05). The predominant amylolytic isolates from HC, LC and LW on S2 were identified by 16S RNA gene sequencing as Enterococcus faecalis, but other species were found in oat fed horses. These results demonstrate that starch source can have a differential effect on the equine fecal microbiota. © 2016, Public Library of Science. All rights reserved. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Source


Schardl C.L.,University of Kentucky | Young C.A.,Samuel Roberts Noble Foundation | Hesse U.,University of Kentucky | Amyotte S.G.,University of Kentucky | And 51 more authors.
PLoS Genetics | Year: 2013

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses. Source


Kagan I.A.,Forage Animal Production Research Unit | Flythe M.D.,Forage Animal Production Research Unit
Journal of visualized experiments : JoVE | Year: 2014

A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species. Source

Discover hidden collaborations