Time filter

Source Type

San Michele, Italy

News Article
Site: http://phys.org/biology-news/

The importance of measuring species diversity as an indicator of ecosystem health has been long recognized and it seems that satellite remote sensing (SRS) has proven to be one of the most cost-effective approaches to identify biodiversity hotspots and predict changes in species composition. What is the real potential of SRS and what are the pitfalls that need to be avoided to achieve the full potential of this method is the topic of a new research, published in the journal Remote Sensing in Ecology and Conservation. The new study, supported by the FP7 funded EU project EU BON takes the assessment of diversity in plant communities as a case study. Showing the difficulties to achieve high results by relying only on field data, the paper discusses the advantages of SRS methods. "In contrast to field-based methods, SRS allows for complete spatial coverages of the Earth's surface under study over a short period of time. Furthermore, it provides repeated measures, thus making it possible to study temporal changes in biodiversity," explains Dr. D. Rocchini from Fondazione Edmund Mach, lead author and WP deputy leader / task leader in EU BON. "In our research we provide a concise review of the potential of satellites to help track changes in plant species diversity, and provide, for the first time, an overview of the potential pitfalls associated with the misuse of satellite imagery to predict species diversity. " Traditionally, assessment of biodiversity at local and regional scales relies on the one hand on local diversity, or the so called alpha-diversity, and on the other, on species turnover, or beta-diversity. Only in combination of these two measures can lead to an estimate of the whole diversity of an area. While the assessment of alpha-diversity is relatively straightforward, calculation of beta-diversity could prove to be quite challenging. This is where increased collaboration between the remote sensing and biodiversity communities is needed in order to properly address future challenges and developments. The new research shown the high potential of remote sensing in biodiversity studies while also identifying the challenges underpinning the development of this interdisciplinary field of research. "Further sensitivity studies on environmental parameters derived from remote sensing for biodiversity mapping need to be undertaken to understand the pitfalls and impacts of different data collection processes and models. Such information, however, is crucial for a continuous global biodiversity analysis and an improved understanding of our current global challenges."concludes Dr. Rocchini. Explore further: Non-native plants are 'not a threat' to floral diversity More information: Rocchini, D., Boyd, D. S., Féret, J.-B., Foody, G. M., He, K. S., Lausch, A., Nagendra, H., Wegmann, M., Pettorelli, N. (2016), Satellite remote sensing to monitor species diversity: potential and pitfalls. Remote Sensing in Ecology and Conservation, 2: 25-36. DOI: 10.1002/rse2.9

Di Guardo M.,Fondazione Edmund | Tadiello A.,Fondazione Edmund | Farneti B.,University of Bologna | Lorenz G.,Fondazione Edmund | And 5 more authors.
PLoS ONE | Year: 2013

In terms of the quality of minimally processed fruit, flesh browning is fundamentally important in the development of an aesthetically unpleasant appearance, with consequent off-flavours. The development of browning depends on the enzymatic action of the polyphenol oxidase (PPO). In the 'Golden Delicious' apple genome ten PPO genes were initially identified and located on three main chromosomes (2, 5 and 10). Of these genes, one element in particular, here called Md-PPO, located on chromosome 10, was further investigated and genetically mapped in two apple progenies ('Fuji x Pink Lady' and 'Golden Delicious x Braeburn'). Both linkage maps, made up of 481 and 608 markers respectively, were then employed to find QTL regions associated with fruit flesh browning, allowing the detection of 25 QTLs related to several browning parameters. These were distributed over six linkage groups with LOD values spanning from 3.08 to 4.99 and showed a rate of phenotypic variance from 26.1 to 38.6%. Anchoring of these intervals to the apple genome led to the identification of several genes involved in polyphenol synthesis and cell wall metabolism. Finally, the expression profile of two specific candidate genes, up and downstream of the polyphenolic pathway, namely phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), provided insight into flesh browning physiology. Md-PPO was further analyzed and two haplotypes were characterised and associated with fruit flesh browning in apple. © 2013 Di Guardo et al. Source

Discover hidden collaborations