Time filter

Source Type

Sant'Ambrogio di Torino, Italy

Sala A.,CNR Institute of Neuroscience | Lucchetti A.,CNR Institute of Neuroscience | Affronte M.,Fondazione Cetacea ONLUS
Aquatic Living Resources

The Central Mediterranean provides important neritic habitats for loggerhead turtles (Caretta caretta), but Mediterranean bottom trawlers catch an estimated 30 000 turtles a year, with 25% mortality. Mortality by trawling is mainly due to enforced apnoea during towing activity. In order to reduce the submergence time and consequent turtle mortality, a specific technical modification was developed in the early 1980s: the Turtle Excluder Device (TED). In this paper, we field-tested a typical Supershooter TED and three new types of low-cost TED, built with different designs and materials, incorporating aspects of US and Australian TEDs, as well as design features to improve handling and catch rates. The performance of the TEDs was investigated under commercial fishing conditions in diverse trawling grounds in the Adriatic Sea (Mediterranean). All TEDs were easy to operate and did not require changes to normal fishing operations. Due to lack of entry of turtles it was not possible to evaluate the ability of the different TEDs to release turtles, but one large loggerhead turtle (C. caretta) was captured during the experimental tows and was successfully excluded by the Supershooter. The TEDs reduced anthropogenic debris and, consequently, sorting operations on board. Among the four TEDs tested, both the semi-rigid TED and the Supershooter performed in accordance with the design objectives: total discards were reduced but total commercial catches were not significantly reduced. With the Supershooter, all European hake (Merluccius merluccius) individuals equal to or above 16 cm were found in the codend and 10-15% of those between 5.0 and 15.5 cm were released. In general, the total discard rate of the TED-equipped nets was reduced to around 20-60%. Since the Council Regulation (EC) No. 1967/2006 called for a discard reduction policy in waters under the jurisdiction of the European Union, TEDs may have some broader value in this context. © EDP Sciences, IFREMER, IRD 2011. Source

Casale P.,University of Rome La Sapienza | Affronte M.,Fondazione Cetacea ONLUS | Scaravelli D.,University of Bologna | Lazar B.,University of Zagreb | And 3 more authors.
Marine Biology

Knowledge about migratory routes and highly frequented areas is a priority for sea turtle conservation, but the movement patterns of juveniles frequenting the Adriatic have not been investigated yet, although juveniles represent the bulk of populations. We tracked by satellite six juvenile and one adult female loggerhead from the north Adriatic. The results indicated that loggerhead juveniles (1) can either show a residential behaviour remaining in the Adriatic throughout the year or perform seasonal migrations to other areas, (2) can remain even in the coldest, northernmost area during winter, (3) can frequent relatively small foraging areas, (4) mostly frequent the eastern part of the Adriatic, and (5) follow preferred migratory routes along the western and eastern Adriatic coasts. The movements of the adult turtle also revealed (6) a behavioural polymorphism in Mediterranean adults, which included a lack of area fidelity and connection between distant neritic foraging grounds. © 2012 Springer-Verlag. Source

Nardini G.,Fondazione Cetacea ONLUS | Florio D.,University of Bologna | Di Girolamo N.,Clinica per Animali Esotici | Gustinelli A.,Clinica per Animali Esotici | And 4 more authors.
Journal of Zoo and Wildlife Medicine

A loggerhead sea turtle (Caretta caretta) was found stranded alive along the Adriatic coast close to Ancona, Italy, displaying obtundation, tachypnea, and increased respiratory effort. It died a few hours after admission, and a postmortem examination was immediately performed. Miliary yellowish nodules were evident in the liver, and a lower number in the heart, stomach, and gut wall. Hundreds of whitish nodules were scattered in the lungs, with the majority of the pulmonary parenchyma being replaced by the lesions. Histologically, all nodular lesions consisted of a small central area of necrosis with acid-fast bacilli surrounded by epithelioid cells, macrophages, and lymphocytes. Giant cells were found in the spleen and the liver. Kidneys, lungs, liver, spleen, brain, and skin lesions were inoculated aseptically onto general isolation media and selective isolation media for mycobacteria. The isolate showed a restriction pattern identical to Mycobacterium chelonae by polymerase chain reaction-restriction fragment length polymorphism. To the best of the authors' knowledge, this is the first description of a disseminated infection caused by a potentially pathogenic mycobacteria in a stranded, free-ranging loggerhead sea turtle. Veterinary staff and biologists who handle sea turtles with suspected mycobacterial disease should protect themselves appropriately. © 2014 by American Association of Zoo Veterinarians. Source

Genov T.,University of Primorska | Angelini V.,Fondazione Cetacea ONLUS | Hace A.,Morigenos Slovenian Marine Mammal Society | Palmisano G.,University of Padua | And 4 more authors.
Journal of the Marine Biological Association of the United Kingdom

Understanding animal movement patterns is not only important for providing insight into their biology, but is also relevant to conservation planning. However, in aquatic and wide-ranging species such as cetaceans, this is often difficult. The common bottlenose dolphin (Tursiops truncatus) is the most common cetacean in the northern and central Adriatic Sea and has been the focus of long-term studies in some areas. All of the studied local populations show a relatively high degree of site fidelity, but their movements, ranging patterns or connectivity are not well understood. On 24 and 26 April 2014 a single adult bottlenose dolphin was observed and photographed alive off the Slovenian coast. The same individual was found dead on the shores of Goro, Italy, on 5 May 2014, about 130 km from the two sighting locations. The well-marked dorsal fin made the identification straightforward. The dolphin was found freshly dead, suggesting it had died very recently prior to being found. This indicates that the reported movement was a real one, rather than an artefact of currents. Although single cases cannot provide the basis for making population-level inferences, our observation shows that northern Adriatic bottlenose dolphins can make substantial movements in short periods of time and suggests that such movements could be more common than currently documented. Comparisons among photo-ID catalogues and stranding events can be highly informative, as they can provide useful information with implications for the cross-border conservation of mobile marine predators. Copyright © Marine Biological Association of the United Kingdom 2015 Source

Cocci P.,University of Camerino | Bracchetti L.,University of Camerino | Angelini V.,Fondazione Cetacea ONLUS | Bucchia M.,University of Bologna | And 3 more authors.
Marine Biology

Plasma testosterone levels were evaluated, by validating and using a commercially available testosterone enzyme immunoassay (EIA) as an indicator of the sex of immature loggerhead turtles (Caretta caretta) recovered along the western coast of the central Adriatic Sea between November 2011 and February 2012. Testosterone levels were measured in blood samples collected from 28 immature turtles kept in short-term maintenance at the Fondazione Cetacea Rescue Centre (Italy). Overall, plasma testosterone ranged between 229.3 and 2628.6 pg ml-1, suggesting that the EIA procedure is effective for determining androgen titers in immature loggerhead sea turtles. Analysis of the obtained data indicates an unbiased sex ratio supporting previous studies of juvenile loggerhead turtle sex ratios in the Mediterranean Sea. The present work can be considered a starting point for augmenting knowledge on the dynamics of juvenile loggerhead aggregations increasingly found in the northern-central Adriatic Sea and for promoting local management for conservation actions. © 2013 Springer-Verlag Berlin Heidelberg. Source

Discover hidden collaborations