Fondation University Bordeaux

Bordeaux, France

Fondation University Bordeaux

Bordeaux, France
SEARCH FILTERS
Time filter
Source Type

Smit N.W.,University of Amsterdam | Smit N.W.,Netherlands Heart Institute | Ten Sande J.N.,University of Amsterdam | Ten Sande J.N.,Netherlands Heart Institute | And 13 more authors.
PLoS ONE | Year: 2017

Background Stem cell therapy to improve cardiac function after myocardial infarction is hampered by poor cell retention, while it may also increase the risk of arrhythmias by providing an arrhyth-mogenic substrate. We previously showed that porcine adipose tissue-derived-stromal cells (pASC) induce conduction slowing through paracrine actions, whereas rat ASC (rASC) and human ASC (hASC) induce conduction slowing by direct coupling. We postulate that biomaterial microspheres mitigate the conduction slowing influence of pASC by interacting with paracrine signaling. Aim To investigate the modulation of ASC-loaded recombinant human collagen-based microspheres, on the electrophysiological behavior of neonatal rat ventricular myocytes (NRVM). Method Unipolar extracellular electrograms, derived from microelectrode arrays (8x8 electrodes) containing NRVM, co-cultured with ASC or ASC loaded microspheres, were used to determine conduction velocity (CV) and conduction heterogeneity. Conditioned medium (Cme) of (co)cultures was used to assess paracrine mechanisms. Results Microspheres did not affect CV in control (NRVM) monolayers. In co-cultures of NRVM and rASC, hASC or pASC, CV was lower than in controls (14.4±1.0, 13.0±0.6 and 9.0± 1.0 vs. 19.5±0.5 cm/s respectively, p<0.001). Microspheres loaded with either rASC or hASC still induced conduction slowing compared to controls (13.5±0.4 and 12.6±0.5 cm/s respectively, p<0.001). However, pASC loaded microspheres increased CV of NRVM compared to pASC and NRMV co-cultures (16.3±1.3 cm/s, p< 0.001) and did not differ from controls (p = NS). Cme of pASC reduced CV in control monolayers of NRVM (10.3±1.1 cm/s, p<0.001), similar to Cme derived from pASC-loaded microspheres (11.1±1.7 cm/s, p = 1.0). The presence of microspheres in monolayers of NRVM abolished the CV slowing influence of Cme pASC (15.9±1.0 cm/s, p = NS vs. control). Conclusion The application of recombinant human collagen-based microspheres mitigates indirect paracrine conduction slowing through interference with a secondary autocrine myocardial factor. © 2017 Smit et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Hill Y.R.,King's College London | Child N.,King's College London | Hanson B.,University College London | Wallman M.,Franhofer Chalmers Center | And 8 more authors.
PLoS ONE | Year: 2016

Exit sites associated with scar-related reentrant arrhythmias represent important targets for catheter ablation therapy. However, their accurate location in a safe and robust manner remains a significant clinical challenge. We recently proposed a novel quantitative metric (termed the Reentry Vulnerability Index, RVI) to determine the difference between activation and repolarisation intervals measured from pairs of spatial locations during premature stimulation to accurately locate the critical site of reentry formation. In the clinic, the method showed potential to identify regions of low RVI corresponding to areas vulnerable to reentry, subsequently identified as ventricular tachycardia (VT) circuit exit sites. Here, we perform an in silico investigation of the RVI metric in order to aid the acquisition and interpretation of RVI maps and optimise its future usage within the clinic. Within idealised 2D sheet models we show that the RVI produces lower values under correspondingly more arrhythmogenic conditions, with even low resolution (8 mm electrode separation) recordings still able to locate vulnerable regions. When applied to models of infarct scars, the surface RVI maps successfully identified exit sites of the reentrant circuit, even in scenarios where the scar was wholly intramural. Within highly complex infarct scar anatomies with multiple reentrant pathways, the identified exit sites were dependent upon the specific pacing location used to compute the endocardial RVI maps. However, simulated ablation of these sites successfully prevented the reentry re-initiation. We conclude that endocardial surface RVI maps are able to successfully locate regions vulnerable to reentry corresponding to critical exit sites during sustained scar-related VT. The method is robust against highly complex and intramural scar anatomies and low resolution clinical data acquisition. Optimal location of all relevant sites requires RVI maps to be computed from multiple pacing locations. Copyright: © 2016 Hill et al.


Child N.,King's College London | Bishop M.J.,King's College London | Hanson B.,University College London | Coronel R.,Fondation University Bordeaux | And 12 more authors.
Heart Rhythm | Year: 2015

Background Initiation of reentrant ventricular tachycardia (VT) involves complex interactions between front and tail of the activation wave. Recent experimental work has identified the time interval between S2 repolarization proximal to a line of functional block and S2 activation at the adjacent distal side as a critical determinant of reentry. Objectives We hypothesized that (1) an algorithm could be developed to generate a spatial map of this interval ("reentry vulnerability index" [RVI]), (2) this would accurately identify a site of reentry without the need to actually induce the arrhythmia, and (3) it would be possible to generate an RVI map in patients during routine clinical procedures. Methods An algorithm was developed that calculated RVI between all pairs of electrodes within a given radius. Results The algorithm successfully identified the region with increased susceptibility to reentry in an established Langendorff pig heart model and the site of reentry and rotor formation in an optically mapped sheep ventricular preparation and computational simulations. The feasibility of RVI mapping was evaluated during a clinical procedure by coregistering with cardiac anatomy and physiology of a patient undergoing VT ablation. Conclusion We developed an algorithm to calculate a reentry vulnerability index from intervals between local repolarization and activation. The algorithm accurately identified the region of reentry in 2 animal models of functional reentry. The clinical application was demonstrated in a patient with VT and identified the area of reentry without the need of inducing the arrhythmia. © 2015 Heart Rhythm Society.


Doshi A.N.,Washington University in St. Louis | Walton R.D.,Fondation University Bordeaux | Krul S.P.,Heart Center | de Groot J.R.,George Washington University | And 8 more authors.
Computers in Biology and Medicine | Year: 2015

Myocardial conduction velocity is important for the genesis of arrhythmias. In the normal heart, conduction is primarily dependent on fiber direction (anisotropy) and may be discontinuous at sites with tissue heterogeneities (trabeculated or fibrotic tissue). We present a semi-automated method for the accurate measurement of conduction velocity based on high-resolution activation mapping following central stimulation. The method was applied to activation maps created from myocardium from man, sheep and mouse with anisotropic and discontinuous conduction. Advantages of the presented method over existing methods are discussed. © 2015 Elsevier Ltd.


Doshi A.N.,Washington University in St. Louis | Walton R.D.,Fondation University Bordeaux | Krul S.P.,University of Amsterdam | de Groot J.R.,George Washington University | And 7 more authors.
Computers in Biology and Medicine | Year: 2015

Myocardial conduction velocity is important for the genesis of arrhythmias. In the normal heart, conduction is primarily dependent on fiber direction (anisotropy) and may be discontinuous at sites with tissue heterogeneities (trabeculated or fibrotic tissue). We present a semi-automated method for the accurate measurement of conduction velocity based on high-resolution activation mapping following central stimulation. The method was applied to activation maps created from myocardium from man, sheep and mouse with anisotropic and discontinuous conduction. Advantages of the presented method over existing methods are discussed. © 2015 Elsevier Ltd.


PubMed | Washington University in St. Louis, University of Amsterdam, French Institute of Health and Medical Research, Fondation University Bordeaux and George Washington University
Type: | Journal: Computers in biology and medicine | Year: 2015

Myocardial conduction velocity is important for the genesis of arrhythmias. In the normal heart, conduction is primarily dependent on fiber direction (anisotropy) and may be discontinuous at sites with tissue heterogeneities (trabeculated or fibrotic tissue). We present a semi-automated method for the accurate measurement of conduction velocity based on high-resolution activation mapping following central stimulation. The method was applied to activation maps created from myocardium from man, sheep and mouse with anisotropic and discontinuous conduction. Advantages of the presented method over existing methods are discussed.

Loading Fondation University Bordeaux collaborators
Loading Fondation University Bordeaux collaborators