Floragenex Inc.

Eugene, OR, United States

Floragenex Inc.

Eugene, OR, United States
Time filter
Source Type

Roda F.,Harvard University | Walter G.M.,University of Queensland | Nipper R.,Floragenex Inc. | Ortiz-Barrientos D.,University of Queensland
Molecular Ecology | Year: 2017

The build-up of the phenotypic differences that distinguish species has long intrigued biologists. These differences are often inherited as stable polymorphisms that allow the cosegregation of adaptive variation within species, and facilitate the differentiation of complex phenotypes between species. It has been suggested that the clustering of adaptive loci could facilitate this process, but evidence is still scarce. Here, we used QTL analysis to study the genetic basis of phenotypic differentiation between coastal populations of the Australian wildflower Senecio lautus. We found that a genomic region consistently governs variation in several of the traits that distinguish these contrasting forms. Additionally, some of the taxon-specific traits controlled by this QTL cluster have evolved repeatedly during the adaptation to the same habitats, suggesting that it could mediate divergence between locally adapted forms. This cluster contains footprints of divergent natural selection across the range of S. lautus, which suggests that it could have been instrumental for the rapid diversification of this species. © 2017 John Wiley & Sons Ltd.

Pfender W.F.,Oregon State University | Saha M.C.,Samuel Roberts Noble Foundation | Johnson E.A.,Floragenex Inc. | Slabaugh M.B.,Oregon State University
Theoretical and Applied Genetics | Year: 2011

A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. A susceptible and a resistant plant were crossed to produce a pseudo-testcross population of 193 F1 individuals. Markers were produced by the restriction-site associated DNA (RAD) process, which uses massively parallel and multiplexed sequencing of reduced-representation libraries. Additional simple sequence repeat (SSR) and sequence-tagged site (STS) markers were combined with the RAD markers to produce maps for the female (738 cM) and male (721 cM) parents. Stem rust phenotypes (number of pustules per plant) were determined in replicated greenhouse trials by inoculation with a field-collected, genetically heterogeneous population of urediniospores. The F1 progeny displayed continuous distribution of phenotypes and transgressive segregation. We detected three resistance QTL. The most prominent QTL (qLpPg1) is located near 41 cM on linkage group (LG) 7 with a 2-LOD interval of 8 cM, and accounts for 30-38% of the stem rust phenotypic variance. QTL were detected also on LG1 (qLpPg2) and LG6 (qLpPg3), each accounting for approximately 10% of phenotypic variance. Alleles of loci closely linked to these QTL originated from the resistant parent for qLpPg1 and from both parents for qLpPg2 and qLpPg3. Observed quantitative nature of the resistance may be due to partial-resistance effects against all pathogen genotypes, or qualitative effects completely preventing infection by only some genotypes in the genetically mixed inoculum. RAD markers facilitated rapid construction of new genetic maps in this outcrossing species and will enable development of sequence-based markers linked to stem rust resistance in L. perenne. © 2011 Springer-Verlag (outside the USA).

Ruegg K.,University of California at Los Angeles | Ruegg K.,University of California at Santa Cruz | Anderson E.C.,Southwest Fisheries Science Center | Anderson E.C.,University of California at Santa Cruz | And 4 more authors.
Molecular Ecology | Year: 2014

Next-generation sequencing has made it possible to begin asking questions about the process of divergence at the level of the genome. For example, recently, there has been a debate around the role of 'genomic islands of divergence' (i.e. blocks of outlier loci) in facilitating the process of speciation-with-gene-flow. The Swainson's thrush, Catharus ustulatus, is a migratory songbird with two genetically distinct subspecies that differ in a number of traits known to be involved in reproductive isolation in birds (plumage coloration, song and migratory behaviour), despite contemporary gene flow along a secondary contact zone. Here, we use RAD-PE sequencing to test emerging hypotheses about the process of divergence at the level of the genome and identify genes and gene regions involved in differentiation in this migratory songbird. Our analyses revealed distinct genomic islands on 15 of the 23 chromosomes and an accelerated rate of divergence on the Z chromosome, one of the avian sex chromosomes. Further, an analysis of loci linked to traits known to be involved in reproductive isolation in songbirds showed that genes linked to migration are significantly more differentiated than expected by chance, but that these genes lie primarily outside the genomic islands. Overall, our analysis supports the idea that genes linked to migration play an important role in divergence in migratory songbirds, but we find no compelling evidence that the observed genomic islands are facilitating adaptive divergence in migratory behaviour. © 2014 John Wiley & Sons Ltd.

Rutledge L.Y.,Trent University | Devillard S.,University of Lyon | Devillard S.,University Claude Bernard Lyon 1 | Boone J.Q.,Floragenex Inc. | And 2 more authors.
Biology Letters | Year: 2015

Top predators are disappearing worldwide, significantly changing ecosystems that depend on top-down regulation. Conflict with humans remains the primary roadblock for large carnivore conservation, but for the eastern Wolf (Canis lycaon), disagreement over its evolutionary origins presents a significant barrier to conservation in Canada and has impeded protection for grey wolves (Canis lupus) in the USA. Here, we use 127 235 single-nucleotide polymorphisms (SNPs) identified from restriction-site associated DNA sequencing (RAD-seq) of wolves and coyotes, in combination with genomic simulations, to test hypotheses of hybrid origins of Canis types in eastern NorthAmerica.A principal components analysis revealed no evidence to support eastern wolves, or any other Canis type, as the product of grey Wolf × western coyote hybridization. In contrast, simulations that included eastern wolves as a distinct taxon clarified the hybrid origins of Great Lakesboreal wolves and eastern coyotes. Our results support the eastern Wolf as a distinct genomic cluster in North America and help resolve hybrid origins of Great Lakes wolves and eastern coyotes. The data provide timely information that will shed new light on the debate over Wolf conservation in eastern North America. © 2015 The Authors.

PubMed | Floragenex Inc., Shandong Peanut Research Institute, Tuskegee University and Fujian Agriculture and forestry University
Type: | Journal: Molecular breeding : new strategies in plant improvement | Year: 2016

Bacterial wilt (BW) caused by

Lamer J.T.,Western Illinois University | Sass G.G.,Escanaba Lake Research Station | Boone J.Q.,Floragenex Inc. | Arbieva Z.H.,University of Illinois at Chicago | And 2 more authors.
Molecular Ecology Resources | Year: 2014

Bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are invasive species and listed as US federally injurious species under the Lacy Act. They have established populations in much of the Mississippi River Basin (MRB; Mississippi, Illinois, and Missouri rivers) and are capable of producing fertile hybrids and complex introgression. Characterizing the composition of this admixture requires a large set of high-quality, evolutionarily conserved, diagnostic genetic markers to aid in the identification and management of these species in the midst of morphological ambiguity. Restriction site-associated DNA (RAD) sequencing of 45 barcoded bighead and silver carp from the United States and China produced reads that were aligned to the silver carp transcriptome yielded 261 candidate single nucleotide polymorphisms (SNPs) with fixed allelic differences between the two species. We selected the highest quality 112 SNP loci for validation using 194 putative pure-species and F1 hybrids from the MRB and putative bighead carp and silver carp pure species from China (Amur, Pearl and Yangtze rivers). Fifty SNPs were omitted due to design/amplification failure or lack of diagnostic utility. A total of 57 species-diagnostic SNPs conserved between carp species in US and Chinese rivers were identified; 32 were annotated to functional gene loci. Twenty-seven of the 181 (15%) putative pure species were identified as hybrid backcrosses after validation, including three backcrosses from the Amur River, where hybridization has not been documented previously. The 57 SNPs identified through RAD sequencing provide a diagnostic tool to detect population admixture and to identify hybrid and pure-species Asian carps in the United States and China. © 2013 John Wiley & Sons Ltd.

Hipp A.L.,Morton Arboretum | Eaton D.A.R.,Field Museum | Eaton D.A.R.,University of Chicago | Eaton D.A.R.,Yale University | And 4 more authors.
PLoS ONE | Year: 2014

Previous phylogenetic studies in oaks (Quercus, Fagaceae) have failed to resolve the backbone topology of the genus with strong support. Here, we utilize next-generation sequencing of restriction-site associated DNA (RAD-Seq) to resolve a framework phylogeny of a predominantly American clade of oaks whose crown age is estimated at 23-33 million years old. Using a recently developed analytical pipeline for RAD-Seq phylogenetics, we created a concatenated matrix of 1.40 E06 aligned nucleotides, constituting 27,727 sequence clusters. RAD-Seq data were readily combined across runs, with no difference in phylogenetic placement between technical replicates, which overlapped by only 43-64% in locus coverage. 17% (4,715) of the loci we analyzed could be mapped with high confidence to one or more expressed sequence tags in NCBI Genbank. A concatenated matrix of the loci that BLAST to at least one EST sequence provides approximately half as many variable or parsimony-informative characters as equal-sized datasets from the non-EST loci. The EST-associated matrix is more complete (fewer missing loci) and has slightly lower homoplasy than non-EST subsampled matrices of the same size, but there is no difference in phylogenetic support or relative attribution of base substitutions to internal versus terminal branches of the phylogeny. We introduce a partitioned RAD visualization method (implemented in the R package RADami; http://cran.r-project.org/web/ packages/RADami) to investigate the possibility that suboptimal topologies supported by large numbers of loci - due, for example, to reticulate evolution or lineage sorting - are masked by the globally optimal tree. We find no evidence for strongly-supported alternative topologies in our study, suggesting that the phylogeny we recover is a robust estimate of large-scale phylogenetic patterns in the American oak clade. Our study is one of the first to demonstrate the utility of RAD-Seq data for inferring phylogeny in a 23-33 million year-old clade. © 2014 Hipp et al.

Pegadaraju V.,BioDiagnostics Inc | Nipper R.,Floragenex Inc. | Hulke B.,U.S. Department of Agriculture | Qi L.,U.S. Department of Agriculture | Schultz Q.,BioDiagnostics Inc
BMC Genomics | Year: 2013

Background: Application of Single Nucleotide Polymorphism (SNP) marker technology as a tool in sunflower breeding programs offers enormous potential to improve sunflower genetics, and facilitate faster release of sunflower hybrids to the market place. Through a National Sunflower Association (NSA) funded initiative, we report on the process of SNP discovery through reductive genome sequencing and local assembly of six diverse sunflower inbred lines that represent oil as well as confection types.Results: A combination of Restriction site Associated DNA Sequencing (RAD-Seq) protocols and Illumina paired-end sequencing chemistry generated high quality 89.4 M paired end reads from the six lines which represent 5.3 GB of the sequencing data. Raw reads from the sunflower line, RHA 464 were assembled de novo to serve as a framework reference genome. About 15.2 Mb of sunflower genome distributed over 42,267 contigs were obtained upon assembly of RHA 464 sequencing data, the contig lengths ranged from 200 to 950 bp with an N50 length of 393 bp. SNP calling was performed by aligning sequencing data from the six sunflower lines to the assembled reference RHA 464. On average, 1 SNP was located every 143 bp of the sunflower genome sequence. Based on several filtering criteria, a final set of 16,467 putative sequence variants with characteristics favorable for Illumina Infinium Genotyping Technology (IGT) were mined from the sequence data generated across six diverse sunflower lines.Conclusion: Here we report the molecular and computational methodology involved in SNP development for a complex genome like sunflower lacking reference assembly, offering an attractive tool for molecular breeding purposes in sunflower. © 2013 Pegadaraju et al.; licensee BioMed Central Ltd.

Chutimanitsakun Y.,Oregon State University | Nipper R.W.,Floragenex Inc. | Cuesta-Marcos A.,Oregon State University | Cistue L.,CSIC - Aula Dei Experimental Station | And 4 more authors.
BMC Genomics | Year: 2011

Background: Linkage maps are an integral resource for dissection of complex genetic traits in plant and animal species. Canonical map construction follows a well-established workflow: an initial discovery phase where genetic markers are mined from a small pool of individuals, followed by genotyping of selected mapping populations using sets of marker panels. A newly developed sequence-based marker technology, Restriction site Associated DNA (RAD), enables synchronous single nucleotide polymorphism (SNP) marker discovery and genotyping using massively parallel sequencing. The objective of this research was to assess the utility of RAD markers for linkage map construction, employing barley as a model system. Using the published high density EST-based SNP map in the Oregon Wolfe Barley (OWB) mapping population as a reference, we created a RAD map using a limited set of prior markers to establish linakge group identity, integrated the RAD and prior data, and used both maps for detection of quantitative trait loci (QTL).Results: Using the RAD protocol in tandem with the Illumina sequence by synthesis platform, a total of 530 SNP markers were identified from initial scans of the OWB parental inbred lines - the "dominant" and "recessive" marker stocks - and scored in a 93 member doubled haploid (DH) mapping population. RAD sequence data from the structured population was converted into allele genotypes from which a genetic map was constructed. The assembled RAD-only map consists of 445 markers with an average interval length of 5 cM, while an integrated map includes 463 RAD loci and 2383 prior markers. Sequenced RAD markers are distributed across all seven chromosomes, with polymorphic loci emanating from both coding and noncoding regions in the Hordeum genome. Total map lengths are comparable and the order of common markers is identical in both maps. The same large-effect QTL for reproductive fitness traits were detected with both maps and the majority of these QTL were coincident with a dwarfing gene (ZEO) and the VRS1 gene, which determines the two-row and six-row germplasm groups of barley.Conclusions: We demonstrate how sequenced RAD markers can be leveraged to produce high quality linkage maps for detection of single gene loci and QTLs. By combining SNP discovery and genotyping into parallel sequencing events, RAD markers should be a useful molecular breeding tool for a range of crop species. Expected improvements in cost and throughput of second and third-generation sequencing technologies will enable more powerful applications of the sequenced RAD marker system, including improvements in de novo genome assembly, development of ultra-high density genetic maps and association mapping. © 2011 Chutimanitsakun et al; licensee BioMed Central Ltd.

Slavov G.T.,Aberystwyth University | Nipper R.,Floragenex Inc. | Robson P.,Aberystwyth University | Farrar K.,Aberystwyth University | And 5 more authors.
New Phytologist | Year: 2014

Increasing demands for food and energy require a step change in the effectiveness, speed and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction from a genome-wide set of markers) to guide fundamental plant science and to accelerate breeding in the energy grass Miscanthus. We generated over 100 000 single-nucleotide variants (SNVs) by sequencing restriction site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to phenotypic data for 17 traits measured in a field trial. Confounding by population structure and relatedness was severe in naïve GWAS analyses, but mixed-linear models robustly controlled for these effects and allowed us to detect multiple associations that reached genome-wide significance. Genome-wide prediction accuracies tended to be moderate to high (average of 0.57), but varied dramatically across traits. As expected, predictive abilities increased linearly with the size of the mapping population, but reached a plateau when the number of markers used for prediction exceeded 10 000-20 000, and tended to decline, but remain significant, when cross-validations were performed across subpopulations. Our results suggest that the immediate implementation of genomic selection in Miscanthus breeding programs may be feasible. © 2013 New Phytologist Trust.

Loading Floragenex Inc. collaborators
Loading Floragenex Inc. collaborators