Time filter

Source Type

Eugene, OR, United States

Hipp A.L.,Morton Arboretum | Eaton D.A.R.,Field Museum | Eaton D.A.R.,University of Chicago | Eaton D.A.R.,Yale University | And 4 more authors.
PLoS ONE | Year: 2014

Previous phylogenetic studies in oaks (Quercus, Fagaceae) have failed to resolve the backbone topology of the genus with strong support. Here, we utilize next-generation sequencing of restriction-site associated DNA (RAD-Seq) to resolve a framework phylogeny of a predominantly American clade of oaks whose crown age is estimated at 23-33 million years old. Using a recently developed analytical pipeline for RAD-Seq phylogenetics, we created a concatenated matrix of 1.40 E06 aligned nucleotides, constituting 27,727 sequence clusters. RAD-Seq data were readily combined across runs, with no difference in phylogenetic placement between technical replicates, which overlapped by only 43-64% in locus coverage. 17% (4,715) of the loci we analyzed could be mapped with high confidence to one or more expressed sequence tags in NCBI Genbank. A concatenated matrix of the loci that BLAST to at least one EST sequence provides approximately half as many variable or parsimony-informative characters as equal-sized datasets from the non-EST loci. The EST-associated matrix is more complete (fewer missing loci) and has slightly lower homoplasy than non-EST subsampled matrices of the same size, but there is no difference in phylogenetic support or relative attribution of base substitutions to internal versus terminal branches of the phylogeny. We introduce a partitioned RAD visualization method (implemented in the R package RADami; http://cran.r-project.org/web/ packages/RADami) to investigate the possibility that suboptimal topologies supported by large numbers of loci - due, for example, to reticulate evolution or lineage sorting - are masked by the globally optimal tree. We find no evidence for strongly-supported alternative topologies in our study, suggesting that the phylogeny we recover is a robust estimate of large-scale phylogenetic patterns in the American oak clade. Our study is one of the first to demonstrate the utility of RAD-Seq data for inferring phylogeny in a 23-33 million year-old clade. © 2014 Hipp et al. Source

Lamer J.T.,Western Illinois University | Sass G.G.,Escanaba Lake Research Station | Boone J.Q.,Floragenex Inc. | Arbieva Z.H.,University of Illinois at Chicago | And 2 more authors.
Molecular Ecology Resources | Year: 2014

Bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are invasive species and listed as US federally injurious species under the Lacy Act. They have established populations in much of the Mississippi River Basin (MRB; Mississippi, Illinois, and Missouri rivers) and are capable of producing fertile hybrids and complex introgression. Characterizing the composition of this admixture requires a large set of high-quality, evolutionarily conserved, diagnostic genetic markers to aid in the identification and management of these species in the midst of morphological ambiguity. Restriction site-associated DNA (RAD) sequencing of 45 barcoded bighead and silver carp from the United States and China produced reads that were aligned to the silver carp transcriptome yielded 261 candidate single nucleotide polymorphisms (SNPs) with fixed allelic differences between the two species. We selected the highest quality 112 SNP loci for validation using 194 putative pure-species and F1 hybrids from the MRB and putative bighead carp and silver carp pure species from China (Amur, Pearl and Yangtze rivers). Fifty SNPs were omitted due to design/amplification failure or lack of diagnostic utility. A total of 57 species-diagnostic SNPs conserved between carp species in US and Chinese rivers were identified; 32 were annotated to functional gene loci. Twenty-seven of the 181 (15%) putative pure species were identified as hybrid backcrosses after validation, including three backcrosses from the Amur River, where hybridization has not been documented previously. The 57 SNPs identified through RAD sequencing provide a diagnostic tool to detect population admixture and to identify hybrid and pure-species Asian carps in the United States and China. © 2013 John Wiley & Sons Ltd. Source

Rutledge L.Y.,Trent University | Devillard S.,University of Lyon | Devillard S.,University Claude Bernard Lyon 1 | Boone J.Q.,Floragenex Inc. | And 2 more authors.
Biology Letters | Year: 2015

Top predators are disappearing worldwide, significantly changing ecosystems that depend on top-down regulation. Conflict with humans remains the primary roadblock for large carnivore conservation, but for the eastern Wolf (Canis lycaon), disagreement over its evolutionary origins presents a significant barrier to conservation in Canada and has impeded protection for grey wolves (Canis lupus) in the USA. Here, we use 127 235 single-nucleotide polymorphisms (SNPs) identified from restriction-site associated DNA sequencing (RAD-seq) of wolves and coyotes, in combination with genomic simulations, to test hypotheses of hybrid origins of Canis types in eastern NorthAmerica.A principal components analysis revealed no evidence to support eastern wolves, or any other Canis type, as the product of grey Wolf × western coyote hybridization. In contrast, simulations that included eastern wolves as a distinct taxon clarified the hybrid origins of Great Lakesboreal wolves and eastern coyotes. Our results support the eastern Wolf as a distinct genomic cluster in North America and help resolve hybrid origins of Great Lakes wolves and eastern coyotes. The data provide timely information that will shed new light on the debate over Wolf conservation in eastern North America. © 2015 The Authors. Source

Pfender W.F.,Oregon State University | Saha M.C.,Samuel Roberts Noble Foundation | Johnson E.A.,Floragenex Inc. | Slabaugh M.B.,Oregon State University
Theoretical and Applied Genetics | Year: 2011

A mapping population was created to detect quantitative trait loci (QTL) for resistance to stem rust caused by Puccinia graminis subsp. graminicola in Lolium perenne. A susceptible and a resistant plant were crossed to produce a pseudo-testcross population of 193 F1 individuals. Markers were produced by the restriction-site associated DNA (RAD) process, which uses massively parallel and multiplexed sequencing of reduced-representation libraries. Additional simple sequence repeat (SSR) and sequence-tagged site (STS) markers were combined with the RAD markers to produce maps for the female (738 cM) and male (721 cM) parents. Stem rust phenotypes (number of pustules per plant) were determined in replicated greenhouse trials by inoculation with a field-collected, genetically heterogeneous population of urediniospores. The F1 progeny displayed continuous distribution of phenotypes and transgressive segregation. We detected three resistance QTL. The most prominent QTL (qLpPg1) is located near 41 cM on linkage group (LG) 7 with a 2-LOD interval of 8 cM, and accounts for 30-38% of the stem rust phenotypic variance. QTL were detected also on LG1 (qLpPg2) and LG6 (qLpPg3), each accounting for approximately 10% of phenotypic variance. Alleles of loci closely linked to these QTL originated from the resistant parent for qLpPg1 and from both parents for qLpPg2 and qLpPg3. Observed quantitative nature of the resistance may be due to partial-resistance effects against all pathogen genotypes, or qualitative effects completely preventing infection by only some genotypes in the genetically mixed inoculum. RAD markers facilitated rapid construction of new genetic maps in this outcrossing species and will enable development of sequence-based markers linked to stem rust resistance in L. perenne. © 2011 Springer-Verlag (outside the USA). Source

Slavov G.T.,Aberystwyth University | Nipper R.,Floragenex Inc. | Robson P.,Aberystwyth University | Farrar K.,Aberystwyth University | And 5 more authors.
New Phytologist | Year: 2014

Increasing demands for food and energy require a step change in the effectiveness, speed and flexibility of crop breeding. Therefore, the aim of this study was to assess the potential of genome-wide association studies (GWASs) and genomic selection (i.e. phenotype prediction from a genome-wide set of markers) to guide fundamental plant science and to accelerate breeding in the energy grass Miscanthus. We generated over 100 000 single-nucleotide variants (SNVs) by sequencing restriction site-associated DNA (RAD) tags in 138 Micanthus sinensis genotypes, and related SNVs to phenotypic data for 17 traits measured in a field trial. Confounding by population structure and relatedness was severe in naïve GWAS analyses, but mixed-linear models robustly controlled for these effects and allowed us to detect multiple associations that reached genome-wide significance. Genome-wide prediction accuracies tended to be moderate to high (average of 0.57), but varied dramatically across traits. As expected, predictive abilities increased linearly with the size of the mapping population, but reached a plateau when the number of markers used for prediction exceeded 10 000-20 000, and tended to decline, but remain significant, when cross-validations were performed across subpopulations. Our results suggest that the immediate implementation of genomic selection in Miscanthus breeding programs may be feasible. © 2013 New Phytologist Trust. Source

Discover hidden collaborations