Time filter

Source Type

Billerica, United States

The size of a miniature cryocooler operating on the Stirling refrigeration cycle is further reduced by shortening a first thermal regenerator module (R) disposed on a cold side of a thermal barrier (T) and providing a second thermal regenerator module (R

FLIR Systems Inc. | Date: 2015-06-10

Various techniques are disclosed for providing systems for providing alignment guide information to selectively direct a visible light source to substantially align the visible light source with a desired subject and to project a visible light beam substantially on the desired subject. For example, a system may include a small form factor infrared imaging module to capture thermal images of a scene, which may be received by a processor to generate alignment guide information such as a user-viewable image of the scene, a user-viewable cue, and a framing reticle. In another example, such a system may be implemented as a camera. In yet another example, such a system may be implemented as a spotlight.

Various techniques are provided to compensate for and/or update ineffective (e.g., stale) calibration terms due to calibration drifts in infrared imaging devices. For example, a virtual-shutter non-uniformity correction (NUC) procedure may be initiated to generate NUC terms to correct non-uniformities when appropriate triggering events and/or conditions are detected that may indicate presence of an object or scene to act as a shutter (e.g., a virtual shutter). Scene-based non-uniformity correction (SBNUC) may be performed during image capturing operations of the infrared imaging device, for example, when a virtual-shutter scene is not available. Further, snapshots of calibration data (e.g., NUC terms) produced during the virtual-shutter NUC procedure, the SBNUC process, and/or other NUC process may be taken. Such snapshots may be utilized to provide useful NUC data when the infrared imaging device starts up or is otherwise reactivated, so that the SBNUC or other NUC methods may produce effective results soon after the start-up. Such snapshots may also be utilized to update ineffective calibration terms.

FLIR Systems Inc. | Date: 2015-06-25

Various techniques are provided to identify anomalous pixels in images captured by imaging devices. In one example, an infrared image frame is received. The infrared image frame is captured by a plurality of infrared sensors based on infrared radiation passed through an optical element. A pixel of the infrared image frame is selected. A plurality of neighborhood pixels of the infrared image frame are selected. Values of the selected pixel and the neighborhood pixels are processed to determine whether the value of the selected pixel exhibits a disparity in relation to the neighborhood pixels that exceeds a maximum disparity associated with a configuration of the optical element and the infrared sensors. The selected pixel is selectively designated as an anomalous pixel based on the processing.

FLIR Systems Inc. | Date: 2015-06-26

In one embodiment, an infrared (IR) sensor module includes an IR sensor assembly, including a substrate, a microbolometer array disposed on an upper surface of the substrate; and a cap disposed on the upper surface of the substrate and hermetically enclosing the microbolometer array. A base is disposed below the substrate, and a heat spreader having a generally planar portion is interposed between a lower surface of the substrate and an upper surface of the base. In some embodiments, the heat spreader can include a material having an anisotropic thermal conductivity, e.g., graphite.

Discover hidden collaborations