Time filter

Source Type

Roelandt S.,Coda Research | Heyman P.,Research and Reference Laboratory for Vector Borne Diseases | De Filette M.,Flemish Institute for Biotechnology VIB | De Filette M.,Ghent University | And 10 more authors.
Vector-Borne and Zoonotic Diseases | Year: 2011

Tick-borne encephalitis virus (TBEV) is an important emerging tick-borne viral infection of humans and dogs in Europe. Currently, TBEV surveillance is virtually nonexistent in Belgium, which is considered nonendemic. A commercial enzyme-linked immunosorbent assay (ELISA) was adapted for the detection of TBEV-specific IgG-antibodies in canine sera. Serum samples of Belgian dogs were obtained from three diagnostic laboratories from Northern (n=688) and Southern Belgium (n=192). ELISA-positive and borderline samples were subjected to a TBEV rapid fluorescent focus inhibition confirmation test. One dog was confirmed TBEV seropositive. Several ELISA-positive and borderline sera underwent seroneutralization and hemagglutinin inhibition tests to rule out West Nile and Louping Ill viruses, but tested negative. The clinical history of the seropositive dog could not explain beyond doubt where and when TBEV infection was acquired. Further surveillance is necessary to determine whether this dog remains a single travel-related case or whether it represents an early warning of a possible future emergence of TBEV. © Copyright 2011, Mary Ann Liebert, Inc. Source

Wouters M.M.,University Hospital Leuven | Balemans D.,University Hospital Leuven | Van Wanrooy S.,University Hospital Leuven | Dooley J.,Flemish Institute for Biotechnology VIB | And 26 more authors.
Gastroenterology | Year: 2016

Background & Aims Histamine sensitizes the nociceptor transient reporter potential channel V1 (TRPV1) and has been shown to contribute to visceral hypersensitivity in animals. We investigated the role of TRPV1 in irritable bowel syndrome (IBS) and evaluated if an antagonist of histamine receptor H1 (HRH1) could reduce symptoms of patients in a randomized placebo-controlled trial. Methods By using live calcium imaging, we compared activation of submucosal neurons by the TRPV1 agonist capsaicin in rectal biopsy specimens collected from 9 patients with IBS (ROME 3 criteria) and 15 healthy subjects. The sensitization of TRPV1 by histamine, its metabolite imidazole acetaldehyde, and supernatants from biopsy specimens was assessed by calcium imaging of mouse dorsal root ganglion neurons. We then performed a double-blind trial of patients with IBS (mean age, 31 y; range, 18-65 y; 34 female). After a 2-week run-in period, subjects were assigned randomly to groups given either the HRH1 antagonist ebastine (20 mg/day; n = 28) or placebo (n = 27) for 12 weeks. Rectal biopsy specimens were collected, barostat studies were performed, and symptoms were assessed (using the validated gastrointestinal symptom rating scale) before and after the 12-week period. Patients were followed up for an additional 2 weeks. Abdominal pain, symptom relief, and health-related quality of life were assessed on a weekly basis. The primary end point of the study was the effect of ebastine on the symptom score evoked by rectal distension. Results TRPV1 responses of submucosal neurons from patients with IBS were potentiated compared with those of healthy volunteers. Moreover, TRPV1 responses of submucosal neurons from healthy volunteers could be potentiated by their pre-incubation with histamine; this effect was blocked by the HRH1 antagonist pyrilamine. Supernatants from rectal biopsy specimens from patients with IBS, but not from the healthy volunteers, sensitized TRPV1 in mouse nociceptive dorsal root ganglion neurons via HRH1; this effect could be reproduced by histamine and imidazole acetaldehyde. Compared with subjects given placebo, those given ebastine had reduced visceral hypersensitivity, increased symptom relief (ebastine 46% vs placebo 13%; P =.024), and reduced abdominal pain scores (ebastine 39 ± 23 vs placebo 62 ± 22; P =.0004). Conclusions In studies of rectal biopsy specimens from patients, we found that HRH1-mediated sensitization of TRPV1 is involved in IBS. Ebastine, an antagonist of HRH1, reduced visceral hypersensitivity, symptoms, and abdominal pain in patients with IBS. Inhibitors of this pathway might be developed as a new treatment approach for IBS. © 2016 AGA Institute. Source

Aerts L.,Flemish Institute for Biotechnology VIB | Aerts L.,Catholic University of Leuven | Craessaerts K.,Flemish Institute for Biotechnology VIB | Craessaerts K.,Catholic University of Leuven | And 6 more authors.
PLoS ONE | Year: 2016

Mutations in the gene encoding the mitochondrial kinase PINK1 cause early-onset familial Parkinson's disease. To understand the biological function of PINK1 and its role in the pathogenesis of Parkinson's disease, it is useful to study its kinase activity towards substrates both in vivo and in vitro. For in vitro kinase assays, a purified Triboleum castaneum PINK1 insect orthologue is often employed, because it displays higher levels of activity when compared to human PINK1. We show, however, that the activity requirements, and more importantly the substrate specificity, differ between both orthologues. While Triboleum castaneum PINK1 readily phosphorylates the PINKtide peptide and Histone H1 in vitro, neither of these non-physiological substrates is phosphorylated by human PINK1. Nonetheless, both Tc and human PINK1 phosphorylate Parkin and Ubiquitin, two physiological substrates of PINK1. Our results show that the substrate selectivity differs among PINK1 orthologues, an important consideration that should be taken into account when extrapolating findings back to human PINK1. © 2016 Aerts et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source

Discover hidden collaborations