Cape Town, South Africa
Cape Town, South Africa

Time filter

Source Type

Cho M.A.,South African Council for Scientific and Industrial Research | Ramoelo A.,South African Council for Scientific and Industrial Research | Debba P.,South African Council for Scientific and Industrial Research | Mutanga O.,University of KwaZulu - Natal | And 3 more authors.
Landscape Ecology | Year: 2013

Subtropical forest loss resulting from conversion of forest to other land-cover types such as grassland, secondary forest, subsistence crop farms and small forest patches affects leaf nitrogen (N) stocks in the landscape. This study explores the utility of new remote sensing tools to model the spatial distribution of leaf N concentration in a forested landscape undergoing deforestation in KwaZulu-Natal, South Africa. Leaf N was mapped using models developed from RapidEye imagery; a relatively new space-borne multispectral sensor. RapidEye consists of five spectral bands in the visible to near infra-red (NIR) and has a spatial resolution of 5 m. MERIS terrestrial chlorophyll index derived from the RapidEye explained 50 % of the variance in leaf N across different land-cover types with a model standard error of prediction of 29 % (i.e. of the observed mean leaf N) when assessed on an independent test data. The results showed that indigenous forest fragmentation leads to significant losses in leaf N as most of the land-cover types (e.g. grasslands and subsistence farmlands) resulting from forest degradation showed lower leaf N when compared to the original indigenous forest. Further analysis of the spatial variation of leaf N revealed an autocorrelation distance of about 50 m for leaf N in the fragmented landscape, a scale corresponding to the average dimension of subsistence fields (2,781 m2) in the region. The availability of new multispectral sensors such as RapidEye thus, moves remote sensing closer to widespread monitoring of the effect of tropical forest degradation on leaf N distribution. © 2013 Springer Science+Business Media Dordrecht.

Jarre A.,University of Cape Town | Hutchings L.,University of Cape Town | Kirkman S.P.,University of Cape Town | Kreiner A.,National Marine Information and Research Center Nat | And 15 more authors.
Fisheries Oceanography | Year: 2015

The NansClim project (2010-2013) represented a regional collaboration to assess the effects of climate on Benguela dynamics. Based on in situ (since the 1960s in Namibia and South Africa and 1985 in Angola) and satellite (since the 1980s) observations, the project focussed on four subsystems, namely the Angola subtropical, northern Benguela upwelling, southern Benguela upwelling and Agulhas Bank. This contribution summarizes the findings for selected key questions, ranging from changes in the physico-chemical habitats, plankton, pelagic and demersal fish communities, to cross-cutting evaluation at subsystem and regional scales. The results underline the overriding importance to of considering the combined effects of climate and fishing as drivers of the dynamics of the ecosystem components. Each subsystem currently continues to function largely as a separate entity as described in earlier reviews. However, some changes have been observed across several subsystems, e.g., a coherent shift from one relatively stable period to another occurred in the northern and southern Benguela in the mid-1990s. Future climate change could weaken the boundaries between the four subystems. The findings underline the need for continued regional research collaboration and regional surveys focussed at ecosystem, rather than resource, assessment. Our conclusions include implications for ecosystem-based fisheries management, and recommendations for future regional research. © 2015 John Wiley & Sons Ltd.

Whitfield A.K.,South African Institute For Aquatic Biodiversity | James N.C.,South African Institute For Aquatic Biodiversity | Lamberth S.J.,Forestry and Fisheries DAFF | Adams J.B.,Nelson Mandela Metropolitan University | And 4 more authors.
Estuarine, Coastal and Shelf Science | Year: 2016

The South African coastline is just over 3000 km in length yet it covers three major biogeographic regions, namely subtropical, warm temperate and cool temperate. In this review we examine published information to assess the possible role of climate change in driving distributional changes of a wide variety of organisms around the subcontinent. In particular we focus on harmful algal blooms, seaweeds, eelgrass, mangroves, salt marsh plants, foraminiferans, stromatolites, corals, squid, zooplankton, zoobenthos, fish, birds, crocodiles and hippopotamus, but also refer to biota such as pathogens, coralline algae, jellyfish and otters. The role of pioneers or propagules as indicators of an incipient range expansion are discussed, with mangroves, zoobenthos, fishes and birds providing the best examples of actual and imminent distributional changes. The contraction of the warm temperate biogeographic region, arising from the intrusion of cool upwelled waters along the Western Cape shores, and increasingly warm Agulhas Current waters penetrating along the eastern parts of the subcontinent, are highlighted. The above features provide an ideal setting for the monitoring of biotic drivers and responses to global climate change over different spatial and temporal scales, and have direct relevance to similar studies being conducted elsewhere in the world. We conclude that, although this review focuses mainly on the impact of global climate change on South African coastal biodiversity, other anthropogenic drivers of change such as introduced alien invasive species may act synergistically with climate change, thereby compounding both short and long-term changes in the distribution and abundance of indigenous species. © 2016 Elsevier Ltd.

Loading Forestry and Fisheries DAFF collaborators
Loading Forestry and Fisheries DAFF collaborators