Entity

Time filter

Source Type


Hu G.F.,First Peoples Hospital of Xiaoshang | Quan R.F.,Xiaoshang Hospital of Traditional Chinese Medicine | Chen Y.M.,First Peoples Hospital of Xiaoshang | Bi D.W.,First Peoples Hospital of Xiaoshang | And 3 more authors.
RSC Advances | Year: 2016

The purpose of this study was to develop polyetheretherketone (PEEK)/mesoporous calcium silicate (m-CS) composites (m-CS content: 12 wt% and 24 wt%, abbreviated as CPC12 and CPC24, respectively) to investigate the potential application of CPC for bone tissue regeneration. The compositions and surface morphologies of PEEK, CPC12, and CPC24 were characterized with wide angle X-ray diffraction (WAXRD) and scanning electronic microscopy (SEM), respectively. The water contact angle test demonstrated that the addition of m-CS improved the hydrophilicity of PEEK. The mechanical properties including elastic modulus, compressive strength, and bending strength were enhanced with the addition of m-CS, whereas the tensile strength slightly decreased. The composites, particularly, CPC24, prominently enhanced in vitro bioactivity of PEEK, which was demonstrated by the formation of apatite layer. The in vitro cell culture further suggested that the cell attachment on the composites, especially, CPC24, was significantly higher than PEEK. Encouragingly, the proliferation and ALP activity of the MC3T3-E1 cells were also improved on CPC24 prominently in comparison with the PEEK. Our study indicated that m-CS/PEEK composites, especially, CPC24, had suitable hydrophilicity, bioactivity, and great biocompatibility. Hence, CPC24 would be a great candidate composite with desirable physical and biological properties for bone tissue regeneration. © 2016 The Royal Society of Chemistry. Source


Hu G.,First Peoples Hospital of Xiaoshang | Hu G.,Zhejiang University | Xiao L.,Zhejiang University | Fu H.,First Peoples Hospital of Xiaoshang | And 3 more authors.
Journal of Materials Science: Materials in Medicine | Year: 2010

Injectable calcium sulphate/phosphate cement (CSPC) with degradable characteristic was developed by introduction of calcium sulphate (CS) into calcium phosphate cement (CPC). The setting time, compressive strength, composition, degradation, cells and tissue responses to the CSPC were investigated. The results show that the injectable CSPC with optimum L/P ratio exhibited good injectability, and had suitable setting time and mechanical properties. Furthermore, the CSPC had good degradability and its degradation significantly faster than that of CPC in Tris-HCl solution. Cell culture results indicate that CSPC was biocompatible and could support MG63 cell attachment and proliferation. To investigate the in vivo biocompatibility and osteogenesis, the CSPC were implanted in the bone defects of rabbits. Histological evaluation shows that the introduction of CS into CPC enhanced the efficiency of new bone formation, and CSPC exhibited good biocompatibility, degradability and osteoconductivity with host bone in vivo. It can be concluded that the injectable CSPC had a significant clinical advantage over CPC, and might have potential to be applied in orthopedic, reconstructive and maxillofacial surgery, especially for minimally invasive techniques. © 2009 Springer Science+Business Media, LLC. Source


Hu G.,First Peoples Hospital of Xiaoshang | Hu G.,Zhejiang University | Xiao L.,Zhejiang University | Fu H.,First Peoples Hospital of Xiaoshang | And 3 more authors.
Journal of Porous Materials | Year: 2010

Calcium sulphate/phosphate cement (CSPC) porous scaffolds were fabricated by introduction of calcium sulphate (CS) into calcium phosphate cement utilizing particle-leaching method. The morphology, porosity and mechanical strength as well as degradation of the CSPC scaffolds were characterized. The results reveal that the CSPC with 40 wt% CS content (40 CSPC) scaffolds with a porosity of 81% showed open macropores with the pore size of 200-500 lm. In addition, the 40 CSPC scaffolds with good degree of interconnected macropores degraded 60 wt% in Tris-HCl solution after 12 weeks. The proliferation, differentiation and morphology of MG63 cells on the 40 CSPC scaffolds were determined using MTT assay, ALP activity and SEM. The results suggest that the CSPC scaffolds could stimulate cell proliferation and differentiation, indicating that CSPC scaffolds were biocompatible and had no negative effects on the cells in vitro. The CSPC scaffolds were implanted in femur bone defect of rabbits, and the in vivo biocompatibility and osteogenicity of the scaffolds were investigated. The results indicate that CSPC scaffolds exhibited good biocompatibility, degradability and osteogenesis in vivo. © 2010 Springer Science+Business Media, LLC. Source

Discover hidden collaborations