New Ulm, MN, United States
New Ulm, MN, United States

Firmenich SA is a private Swiss company in the perfume and flavor business. It is the largest privately owned company in the field and ranks number two worldwide., Firmenich has created perfumes for over 100 years and produced a number of well-known flavors. Firmenich employs 6,200 people in 64 countries. Major competitors include Givaudan, International Flavors and Fragrances and Symrise. It bought Noville in 2006 and in 2007 acquired Danisco Flavor division. Wikipedia.


Time filter

Source Type

Patent
Firmenich | Date: 2015-04-16

Provided is a liquid system comprising a first component and a second component the components selected from the group consisting of carbohydrates, sugar alcohols, food grade acids, food grade non-aqueous solvents and food grade salts wherein: a. the second component is different than the first component; b. the system has a melting point lower than each of the components; and c. the liquid system comprises 7% or less water. The systems are useful for protecting an active ingredient in a food system wherein the ingredient is stable at room temperature and retains its sensory properties after being diluted into an aqueous beverage for example to form a flavored aqueous beverage.


Patent
Firmenich | Date: 2016-12-14

The present invention relates to the field of perfumery. More particularly, it concerns compounds comprising at least one -glucuronide moiety capable of liberating a perfuming alcohol. The present invention concerns also the use of said compounds in perfumery as well as the perfuming compositions or perfumed articles, in particular deodorants or antiperspirants comprising the inventions compounds.


Patent
Firmenich | Date: 2015-04-17

The present invention relates to a compound of formula (I) in the form of any one of its stereoisomers or a mixture thereof which is useful as perfuming ingredients.


Patent
Firmenich | Date: 2017-03-15

The present invention relates to a method of producing drimenol and/or drimenol derivatives by contacting at least one polypeptide with farnesyl diphosphate. The method may be performed in vitro or in vivo. The present invention also provides amino acid sequences of polypeptides useful in the method of the invention and nucleic acid encoding the polypeptides of the invention. The method further provides host cells or organisms genetically modified to express the polypeptides of the invention and useful to produce drimenol and /or drimenol derivatives.


Patent
Firmenich and Interquim S.A. | Date: 2017-04-12

A method of enhancing the sweetness of sweetener in a food or beverage product comprising adding Naringenin to the product in an amount of 50 ppm to 200 ppm by weight of the total weight of the product wherein the Naringenin does not block the bitter taste of the product when compared to the beverage without Naringenin. Also provided here is a food or beverage product comprising Naringenin in an amount of from 50 to 200 ppm, by weight, of the total weight of the product, and a sweetener wherein the product is not a product selected from coffee, tea, a cosmetic and a pharmaceutical.


Patent
Firmenich | Date: 2017-03-01

The present invention relates to a compound of formula (I) in the form of any one of its stereoisomers or a mixture thereof which is useful as perfuming ingredients.


Grant
Agency: European Commission | Branch: H2020 | Program: BBI-RIA | Phase: BBI.R10-2015 | Award Amount: 5.00M | Year: 2016

Sustainable production of chemical building blocks and other added value products from plant biomass is required for a bio-based economy. However, the biomass biorefineries should benefit not only from the use of renewable feedstocks but also from greener and more efficient bio-chemical technologies. Previous projects have shown the potential of oxidative enzymes in the production of some added value compounds from biomass components. Of special interest are still unexplored oxidation/oxyfunctionalization reactions (of sugar and lipid compounds) by microbial oxidoreductases, including new (self-sufficient) heme-thiolate peroxygenases. In this context, EnzOx2 plans to develop a 100% biochemical conversion of bio-based 5-hydroxymethylfurfural (HMF) into diformylfuran, a platform chemical, and 2,5-furandicarboxylic acid (FDCA), a plastic building-block. Oxidases (flavo and copper/radical) and peroxygenases will be used to perform the three-step oxidation of HMF to FDCA in a co-substrate and side-product free, one-pot conversion. On the other hand, highly (regio/stereo) selective hydroxylation of plant lipids (such as fatty acids, terpenes and steroids) by peroxygenases will be optimized for cost-effective production of flavours and fragrances (F&F), active pharmaceutical ingredients (APIs) and others. ENZOX2 aims to solve some main bottlenecks in these industrial processes by the use of bio-chemical tools (new/engineered enzymes and optimized biotransformations), to be later validated at the pilot/flagship scale. To attain this objective the consortium includes: i) two world leaders in industrial enzymes (Novozymes) and F&F (Firmenich); ii) two chemical SMEs producing HMF and chiral APIs (AVA-Biochem and Chiracon); iii) two specialized biotechnology SMEs (JenaBios and CLEA); iv) one technology centre in the Plastics sector (AIMPLAS); and v) three CSIC institutes and two universities (Dresden and Delft) with expertise in enzyme reactions and bioprocess implementation.


Reversible covalent bond formation under thermodynamic control adds reactivity to self-assembled supramolecular systems, and is therefore an ideal tool to assess complexity of chemical and biological systems. Dynamic combinatorial/covalent chemistry (DCC) has been used to read structural information by selectively assembling receptors with the optimum molecular fit around a given template from a mixture of reversibly reacting building blocks. This technique allows access to efficient sensing devices and the generation of new biomolecules, such as small molecule receptor binders for drug discovery, but also larger biomimetic polymers and macromolecules with particular three-dimensional structural architectures. Adding a kinetic factor to a thermodynamically controlled equilibrium results in dynamic resolution and in self-sorting and self-replicating systems, all of which are of major importance in biological systems. Furthermore, the temporary modification of bioactive compounds by reversible combinatorial/covalent derivatisation allows control of their release and facilitates their transport across amphiphilic self-assembled systems such as artificial membranes or cell walls. The goal of this review is to give a conceptual overview of how the impact of DCC on supramolecular assemblies at different levels can allow us to understand, predict and modulate the complexity of biological systems. © The Royal Society of Chemistry.


Patent
Firmenich | Date: 2016-05-06

The present invention relates to water-dispersible core-shell microcapsules essentially free of formaldehyde. In particular it concerns core-shell microcapsules having a shell obtained by reacting polyisocyanates or polyoxirans cross-linkers and oligomeric compositions which are the reaction products between a polyamine component and a particular mixture of glyoxal and a C_(4-6 )2,2-dialkoxy-ethanal. The present invention also utilizes the inventions core-shell microcapsules as part of a perfuming composition or of a perfuming consumer product.


Patent
Firmenich | Date: 2016-03-03

The present invention provides a method of producing -santalene by contacting at least one polypeptide with farnesyl phyrophosphate (fpp). In particular, the method may be carried out in vitro or in vivo to produce -santalene, a very useful compound in the fields of perfumery and flavoring. The present invention also provides the amino acid sequence of a polypeptide useful in the method of the invention. A nucleic acid encoding the polypeptide of the invention and an expression vector containing the nucleic acid represent part of the present invention. A non-human host organism and a cell transformed to be used in the method of producing santalene are also part of the present invention.

Loading Firmenich collaborators
Loading Firmenich collaborators